Skip to content
This repository has been archived by the owner on Sep 12, 2024. It is now read-only.

Latest commit

 

History

History
128 lines (77 loc) · 10.6 KB

File metadata and controls

128 lines (77 loc) · 10.6 KB

【Task3 XGB算法梳理】3天

1.CART树

原理

Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm。顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree)、模型树(Model Tree),两者在建树的过程稍有差异。

创建分类树递归过程中,CART每次都选择当前数据集中具有最小Gini信息增益的特征作为结点划分决策树。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支、规模较大,CART算法的二分法可以简化决策树的规模,提高生成决策树的效率。对于连续特征,CART也是采取和C4.5同样的方法处理。为了避免过拟合(Overfitting),CART决策树需要剪枝。预测过程当然也就十分简单,根据产生的决策树模型,延伸匹配特征值到最后的叶子节点即得到预测的类别。      创建回归树时,观察值取值是连续的、没有分类标签,只有根据观察数据得出的值来创建一个预测的规则。在这种情况下,Classification Tree的最优划分规则就无能为力,CART则使用最小剩余方差(Squared Residuals Minimization)来决定Regression Tree的最优划分,该划分准则是期望划分之后的子树误差方差最小。创建模型树,每个叶子节点则是一个机器学习模型,如线性回归模型

CART算法的重要基础包含以下三个方面:

   - 二分(Binary Split):在每次判断过程中,都是对观察变量进行二分。 CART算法采用一种二分递归分割的技术,算法总是将当前样本集分割为两个子样本集,使得生成的决策树的每个非叶结点都只有两个分枝。因此CART算法生成的决策树是结构简洁的二叉树。因此CART算法适用于样本特征的取值为是或非的场景,对于连续特征的处理则与C4.5算法相似。    - 单变量分割(Split Based on One Variable):每次最优划分都是针对单个变量。    - 剪枝策略:CART算法的关键点,也是整个Tree-Based算法的关键步骤。 剪枝过程特别重要,所以在最优决策树生成过程中占有重要地位。有研究表明,剪枝过程的重要性要比树生成过程更为重要,对于不同的划分标准生成的最大树(Maximum Tree),在剪枝之后都能够保留最重要的属性划分,差别不大。反而是剪枝方法对于最优树的生成更为关键。

过程

CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布。

CART算法由以下两步组成:

   - 决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大; 决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准。

   - CART决策树的生成就是递归地构建二叉决策树的过程。CART决策树既可以用于分类也可以用于回归。本文我们仅讨论用于分类的CART。对分类树而言,CART用Gini系数最小化准则来进行特征选择,生成二叉树。 CART生成算法如下:

    输入:训练数据集D,停止计算的条件:     输出:CART决策树。

    根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构建二叉决策树:

    设结点的训练数据集为D,计算现有特征对该数据集的Gini系数。此时,对每一个特征A,对其可能取的每个值a,根据样本点对A=a的测试为“是”或 “否”将D分割成D1和D2两部分,计算A=a时的Gini系数。     在所有可能的特征A以及它们所有可能的切分点a中,选择Gini系数最小的特征及其对应的切分点作为最优特征与最优切分点。依最优特征与最优切分点,从现结点生成两个子结点,将训练数据集依特征分配到两个子结点中去。     对两个子结点递归地调用步骤l~2,直至满足停止条件。     生成CART决策树。     算法停止计算的条件是结点中的样本个数小于预定阈值,或样本集的Gini系数小于预定阈值(样本基本属于同一类),或者没有更多特征。

2.XGB算法原理

  算法思想就是不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数,去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数,最后只需要将每棵树对应的分数加起来就是该样本的预测值。

损失函数

对于回归问题,损失函数是均方差之和;对于分类问题,损失函数是对数损失函数。

分裂结点算法

在上面的推导中,我们知道了如果我们一棵树的结构确定了,如何求得每个叶子结点的分数。但我们还没介绍如何确定树结构,即每次特征分裂怎么寻找最佳特征,怎么寻找最佳分裂点。

  正如上文说到,基于空间切分去构造一颗决策树是一个NP难问题,我们不可能去遍历所有树结构,因此,XGBoost使用了和CART回归树一样的想法,利用贪婪算法,遍历所有特征的所有特征划分点,不同的是使用上式目标函数值作为评价函数。具体做法就是分裂后的目标函数值比单子叶子节点的目标函数的增益,同时为了限制树生长过深,还加了个阈值,只有当增益大于该阈值才进行分裂。

正则化

对缺失值处理

xgboost模型却能够处理缺失值,模型允许缺失值存在。

   原始论文中关于缺失值的处理将其看与稀疏矩阵的处理看作一样。在寻找split point的时候,不会对该特征为missing的样本进行遍历统计,只对该列特征值为non-missing的样本上对应的特征值进行遍历,通过这个技巧来减少了为稀疏离散特征寻找split point的时间开销。在逻辑实现上,为了保证完备性,会分别处理将missing该特征值的样本分配到左叶子结点和右叶子结点的两种情形,计算增益后选择增益大的方向进行分裂即可。可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率。如果在训练中没有缺失值而在预测中出现缺失,那么会自动将缺失值的划分方向放到右子树。

优缺点

优点:

    - xgBoosting支持线性分类器,相当于引入L1和L2正则化项的逻辑回归(分类问题)和线性回归(回归问题);

   - xgBoosting对代价函数做了二阶Talor展开,引入了一阶导数和二阶导数;

   - 当样本存在缺失值是,xgBoosting能自动学习分裂方向;

   - xgBoosting借鉴RF的做法,支持列抽样,这样不仅能防止过拟合,还能降低计算;

   - xgBoosting的代价函数引入正则化项,控制了模型的复杂度,正则化项包含全部叶子节点的个数,每个叶子节点输出的score的L2模的平方和。从贝叶斯方差角度考虑,正则项降低了模型的方差,防止模型过拟合;

   - xgBoosting在每次迭代之后,为叶子结点分配学习速率,降低每棵树的权重,减少每棵树的影响,为后面提供更好的学习空间;

   - xgBoosting工具支持并行,但并不是tree粒度上的,而是特征粒度,决策树最耗时的步骤是对特征的值排序,xgBoosting在迭代之前,先进行预排序,存为block结构,每次迭代,重复使用该结构,降低了模型的计算;block结构也为模型提供了并行可能,在进行结点的分裂时,计算每个特征的增益,选增益最大的特征进行下一步分裂,那么各个特征的增益可以开多线程进行;

   - 可并行的近似直方图算法,树结点在进行分裂时,需要计算每个节点的增益,若数据量较大,对所有节点的特征进行排序,遍历的得到最优分割点,这种贪心法异常耗时,这时引进近似直方图算法,用于生成高效的分割点,即用分裂后的某种值减去分裂前的某种值,获得增益,为了限制树的增长,引入阈值,当增益大于阈值时,进行分裂;

缺点:

   - xgBoosting采用预排序,在迭代之前,对结点的特征做预排序,遍历选择最优分割点,数据量大时,贪心法耗时,LightGBM方法采用histogram算法,占用的内存低,数据分割的复杂度更低;

   - xgBoosting采用level-wise生成决策树,同时分裂同一层的叶子,从而进行多线程优化,不容易过拟合,但很多叶子节点的分裂增益较低,没必要进行跟进一步的分裂,这就带来了不必要的开销;LightGBM采用深度优化,leaf-wise生长策略,每次从当前叶子中选择增益最大的结点进行分裂,循环迭代,但会生长出更深的决策树,产生过拟合,因此引入了一个阈值进行限制,防止过拟合.

应用场景

sklearn参数

n_estimatores

含义:总共迭代的次数,即决策树的个数 调参:

early_stopping_rounds 含义:在验证集上,当连续n次迭代,分数没有提高后,提前终止训练。 调参:防止overfitting。

max_depth 含义:树的深度,默认值为6,典型值3-10。 调参:值越大,越容易过拟合;值越小,越容易欠拟合。

min_child_weight 含义:默认值为1,。 调参:值越大,越容易欠拟合;值越小,越容易过拟合(值较大时,避免模型学习到局部的特殊样本)。

subsample 含义:训练每棵树时,使用的数据占全部训练集的比例。默认值为1,典型值为0.5-1。 调参:防止overfitting。

colsample_bytree 含义:训练每棵树时,使用的特征占全部特征的比例。默认值为1,典型值为0.5-1。 调参:防止overfitting。

参考

西瓜书

cs229吴恩达机器学习课程

李航统计学习

谷歌搜索

公式推导参考:http://t.cn/EJ4F9Q0

参考答案