-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathutils.py
77 lines (69 loc) · 2.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import keras
import random
from keras.utils import to_categorical
class DataGenerator(keras.utils.Sequence):
'Generates data for keras'
def __init__(self,dpath,fpath,data_IDs, batch_size=1, dim=(128,128,128),
n_channels=1, shuffle=True):
'Initialization'
self.dim = dim
self.dpath = dpath
self.fpath = fpath
self.batch_size = batch_size
self.data_IDs = data_IDs
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.data_IDs)/self.batch_size))
def __getitem__(self, index):
'Generates one batch of data'
# Generate indexes of the batch
bsize = self.batch_size
indexes = self.indexes[index*bsize:(index+1)*bsize]
# Find list of IDs
data_IDs_temp = [self.data_IDs[k] for k in indexes]
# Generate data
X, Y = self.__data_generation(data_IDs_temp)
return X, Y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.data_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, data_IDs_temp):
'Generates data containing batch_size samples'
# Initialization
gx = np.fromfile(self.dpath+str(data_IDs_temp[0])+'.dat',dtype=np.single)
fx = np.fromfile(self.fpath+str(data_IDs_temp[0])+'.dat',dtype=np.single)
gx = np.reshape(gx,self.dim)
fx = np.reshape(fx,self.dim)
#gmin = np.min(gx)
#gmax = np.max(gx)
#gx = gx-gmin
#gx = gx/(gmax-gmin)
#gx = gx*255
xm = np.mean(gx)
xs = np.std(gx)
gx = gx-xm
gx = gx/xs
gx = np.transpose(gx)
fx = np.transpose(fx)
#in seismic processing, the dimensions of a seismic array is often arranged as
#a[n3][n2][n1] where n1 represnts the vertical dimenstion. This is why we need
#to transpose the array here in python
# Generate data
X = np.zeros((2, *self.dim, self.n_channels),dtype=np.single)
Y = np.zeros((2, *self.dim, self.n_channels),dtype=np.single)
X[0,] = np.reshape(gx, (*self.dim,self.n_channels))
Y[0,] = np.reshape(fx, (*self.dim,self.n_channels))
X[1,] = np.reshape(np.flipud(gx), (*self.dim,self.n_channels))
Y[1,] = np.reshape(np.flipud(fx), (*self.dim,self.n_channels))
'''
for i in range(4):
X[i,] = np.reshape(np.rot90(gx,i,(2,1)), (*self.dim,self.n_channels))
Y[i,] = np.reshape(np.rot90(fx,i,(2,1)), (*self.dim,self.n_channels))
'''
return X,Y