-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
test.py
37 lines (31 loc) · 1.14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os.path as osp
import glob
import cv2
import numpy as np
import torch
import RRDBNet_arch as arch
model_path = 'models/RRDB_ESRGAN_x4.pth' # models/RRDB_ESRGAN_x4.pth OR models/RRDB_PSNR_x4.pth
device = torch.device('cuda') # if you want to run on CPU, change 'cuda' -> cpu
# device = torch.device('cpu')
test_img_folder = 'LR/*'
model = arch.RRDBNet(3, 3, 64, 23, gc=32)
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
model = model.to(device)
print('Model path {:s}. \nTesting...'.format(model_path))
idx = 0
for path in glob.glob(test_img_folder):
idx += 1
base = osp.splitext(osp.basename(path))[0]
print(idx, base)
# read images
img = cv2.imread(path, cv2.IMREAD_COLOR)
img = img * 1.0 / 255
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
img_LR = img.unsqueeze(0)
img_LR = img_LR.to(device)
with torch.no_grad():
output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round()
cv2.imwrite('results/{:s}_rlt.png'.format(base), output)