-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_dvi_main.py
180 lines (150 loc) · 8.15 KB
/
single_dvi_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
########################################################################################################################
# IMPORT #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse
from umap.umap_ import find_ab_params
from singleVis.vis_models import vis_models as vmodels
from singleVis.losses import UmapLoss, ReconstructionLoss, SingleVisLoss
from singleVis.edge_dataset import DataHandler, create_dataloader
from singleVis.trainer import SingleVisTrainer
from singleVis.data import NormalDataProvider
from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.eval.evaluator import Evaluator
from singleVis.subsampling import RandomSampling
########################################################################################################################
# DVI PARAMETERS #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "singleDVI" # DeepVisualInsight
########################################################################################################################
# LOAD PARAMETERS #
########################################################################################################################
parser = argparse.ArgumentParser(description='Process hyperparameters...')
parser.add_argument('--content_path', '-c', type=str)
parser.add_argument('--iteration','-i', type=int)
parser.add_argument('-g', type=int, default=0)
parser.add_argument('-r', help='ratio', type=float)
parser.add_argument('--method', "-m", type=str)
args = parser.parse_args()
CONTENT_PATH = args.content_path
I = args.iteration
GPU_ID = args.g
RATIO = args.r
M = args.method
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
config = config[VIS_METHOD]
# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]
EPOCH_NAME = config["EPOCH_NAME"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
VIS_MODEL = VISUALIZATION_PARAMETER["VIS_MODEL"]
# VIS_MODEL = "cnAE"
LAMBDA = VISUALIZATION_PARAMETER["LAMBDA"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
VIS_MODEL_NAME = f"{VIS_MODEL_NAME}_{RATIO}_{M}"
EVALUATION_NAME = f"{EVALUATION_NAME}_{RATIO}_{M}"
# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
########################################################################################################################
# TRAINING SETTING #
########################################################################################################################
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
if PREPROCESS:
data_provider._meta_data()
if B_N_EPOCHS >0:
data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
# Define visualization models
model = vmodels[VIS_MODEL](ENCODER_DIMS, DECODER_DIMS)
# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, epoch_name=EPOCH_NAME, device=DEVICE)
# Define DVI Loss
criterion = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA)
# Define training parameters
optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
sampler = RandomSampling(1)
# Define Edge dataset
t0 = time.time()
spatial_cons = SingleEpochSpatialEdgeConstructor(data_provider, I, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS, metric="euclidean", sampler=sampler)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
dataset = DataHandler(edge_to, edge_from, feature_vectors, attention)
edge_loader = create_dataloader(dataset, S_N_EPOCHS, probs, len(edge_to))
#######################################################################################################################
# TRAIN #
#######################################################################################################################
trainer = SingleVisTrainer(model, criterion, optimizer, lr_scheduler,edge_loader=edge_loader, DEVICE=DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save time result
save_dir = data_provider.model_path
file_name = "time_{}".format(VIS_MODEL_NAME)
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if "complex_construction" not in evaluation.keys():
evaluation["complex_construction"] = dict()
evaluation["complex_construction"][str(I)] = round(t1-t0, 3)
if "training" not in evaluation.keys():
evaluation["training"] = dict()
evaluation["training"][str(I)] = round(t3-t2, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
save_dir = os.path.join(data_provider.model_path, "{}_{}".format(EPOCH_NAME, I))
trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))
########################################################################################################################
# VISUALIZATION #
########################################################################################################################
from singleVis.visualizer import visualizer
vis = visualizer(data_provider, projector, 200, "tab10")
vis.savefig(I, f"{VIS_METHOD}_{VIS_MODEL}_{I}_{RATIO}.png")
########################################################################################################################
# EVALUATION #
########################################################################################################################
evaluator = Evaluator(data_provider, projector, metric="euclidean")
evaluator.save_epoch_eval(I, 15, temporal_k=5, file_name="{}".format(EVALUATION_NAME))