-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathrun_fastditattn.sh
68 lines (55 loc) · 2.1 KB
/
run_fastditattn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
set -x
# export NCCL_PXN_DISABLE=1
# # export NCCL_DEBUG=INFO
# export NCCL_SOCKET_IFNAME=eth0
# export NCCL_IB_GID_INDEX=3
# export NCCL_IB_DISABLE=0
# export NCCL_NET_GDR_LEVEL=2
# export NCCL_IB_QPS_PER_CONNECTION=4
# export NCCL_IB_TC=160
# export NCCL_IB_TIMEOUT=22
# export NCCL_P2P=0
# export CUDA_DEVICE_MAX_CONNECTIONS=1
export PYTHONPATH=$PWD:$PYTHONPATH
# Select the model type
# The model is downloaded to a specified location on disk,
# or you can simply use the model's ID on Hugging Face,
# which will then be downloaded to the default cache path on Hugging Face.
export COCO_PATH="/cfs/fjr2/xDiT/coco/annotations/captions_val2014.json"
export MODEL_TYPE="Pixart-alpha"
# Configuration for different model types
# script, model_id, inference_step
declare -A MODEL_CONFIGS=(
["Pixart-alpha"]="pixartalpha_example.py /cfs/dit/PixArt-XL-2-1024-MS 20"
["Pixart-sigma"]="pixartsigma_example.py /cfs/dit/PixArt-Sigma-XL-2-2K-MS 20"
)
if [[ -v MODEL_CONFIGS[$MODEL_TYPE] ]]; then
IFS=' ' read -r SCRIPT MODEL_ID INFERENCE_STEP <<< "${MODEL_CONFIGS[$MODEL_TYPE]}"
export SCRIPT MODEL_ID INFERENCE_STEP
else
echo "Invalid MODEL_TYPE: $MODEL_TYPE"
exit 1
fi
mkdir -p ./results
TASK_ARGS="--height 1024 --width 1024 --no_use_resolution_binning"
FAST_ATTN_ARGS="--use_fast_attn --window_size 512 --n_calib 4 --threshold 0.15 --use_cache --coco_path $COCO_PATH"
# By default, num_pipeline_patch = pipefusion_degree, and you can tune this parameter to achieve optimal performance.
# PIPEFUSION_ARGS="--num_pipeline_patch 8 "
# For high-resolution images, we use the latent output type to avoid runing the vae module. Used for measuring speed.
# OUTPUT_ARGS="--output_type latent"
# PARALLLEL_VAE="--use_parallel_vae"
# Another compile option is `--use_onediff` which will use onediff's compiler.
# COMPILE_FLAG="--use_torch_compile"
torchrun --nproc_per_node=1 ./examples/$SCRIPT \
--model $MODEL_ID \
$PARALLEL_ARGS \
$TASK_ARGS \
$PIPEFUSION_ARGS \
$OUTPUT_ARGS \
--num_inference_steps $INFERENCE_STEP \
--warmup_steps 0 \
--prompt "A small dog" \
$CFG_ARGS \
$FAST_ATTN_ARGS \
$PARALLLEL_VAE \
$COMPILE_FLAG