-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
332 lines (265 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import torch
import random
import numpy as np
from torch.utils.data import DataLoader
from models.detector import OVDBoxClassifier, OVDMaskClassifier
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm # Import tqdm
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from argparse import ArgumentParser
from utils_dir.backbones_utils import prepare_image_for_backbone
from utils_dir.processing_utils import map_labels_to_prototypes
from sklearn.metrics import classification_report
from datasets import init_dataloaders
def prepare_model(args):
# Use GPU if available
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Load prototypes from checkpoint
prototypes = torch.load(args.prototypes_path)
bg_prototypes = torch.load(args.bg_prototypes_path) if args.bg_prototypes_path is not None else None
if args.bg_prototypes_path is not None:
all_prototypes = torch.cat([prototypes['prototypes'], bg_prototypes['prototypes']]).float()
else:
all_prototypes = prototypes['prototypes']
# Initialize model and move it to device
modelClass = OVDBoxClassifier if args.annotations == 'box' else OVDMaskClassifier
model = modelClass(all_prototypes, prototypes['label_names'], backbone_type=args.backbone_type, target_size=args.target_size, scale_factor=args.scale_factor).to(device)
model.train()
return model, device
def custom_xywh2xyxy(x):
# TODO: put it in utils as we use it in eval too!!!
# Convert nx4 boxes from [xmin, ymin, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 2] = x[..., 0] + x[..., 2] # bottom right x
y[..., 3] = x[..., 1] + x[..., 3] # bottom right y
return y
def generate_additional_boxes(images_batch, bounding_boxes_batch, iou_threshold, min_size, max_size, num_additional_boxes):
B, N, _ = bounding_boxes_batch.shape # B: Batch size, N: Number of boxes per image
additional_boxes = []
for b in range(B):
boxes_per_image = bounding_boxes_batch[b] # Extract bounding boxes for each image
for _ in range(num_additional_boxes):
generated_box = []
max_attempts = 100 # Max attempts to generate a box with IoU < iou_threshold
for _ in range(max_attempts):
# Generate random box dimensions
width = random.randint(min_size, max_size)
height = random.randint(min_size, max_size)
x = random.randint(0, images_batch.size(3) - width)
y = random.randint(0, images_batch.size(2) - height)
# Calculate IoU with existing boxes
iou = torch.tensor([0.0])
for gt_box in boxes_per_image:
box_area = (width * height)
intersection_x1 = max(x, gt_box[0])
intersection_y1 = max(y, gt_box[1])
intersection_x2 = min(x + width, gt_box[0] + gt_box[2])
intersection_y2 = min(y + height, gt_box[1] + gt_box[3])
intersection_area = max(intersection_x2 - intersection_x1, 0) * max(intersection_y2 - intersection_y1, 0)
gt_box_area = (gt_box[2] * gt_box[3]).float()
union_area = box_area + gt_box_area - intersection_area
iou = max(iou, intersection_area / union_area)
if iou < iou_threshold:
# If generated box has IoU < iou_threshold with all existing boxes, add to the list
generated_box = [x, y, width, height]
break
if generated_box:
additional_boxes.append(generated_box)
# Reshape additional boxes to [B, M, 4]
additional_boxes_tensor = torch.tensor(additional_boxes).reshape(B, -1, 4)
return additional_boxes_tensor
def train(args, model, dataloader, val_dataloader, device):
# Define the optimizer and scheduler
optimizer = optim.Adam(model.parameters(), lr=args.lr)
torch.autograd.set_detect_anomaly(True)
scheduler = MultiStepLR(optimizer, milestones=[10, 100], gamma=args.lr_decay)
# Define the loss function (already defined in your model)
criterion = nn.CrossEntropyLoss(ignore_index=-1)
num_cls = dataloader.dataset.get_category_number()
use_masks = False if args.annotations == 'box' else True
# Training loop
for epoch in range(args.num_epochs):
total_loss = 0.0
val_loss = 0.0
total_correct = 0
total_samples = 0
# Use tqdm to create a progress bar for the dataloader
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc=f'Epoch {epoch + 1}/{args.num_epochs}', leave=False):
images, boxes, labels, _ = batch
# Convert map dataset labels classes to the model prototype indices
labels = map_labels_to_prototypes(dataloader.dataset.get_categories(), model.get_categories(), labels)
if len(labels[labels != -1]) == 0:
continue # skip if no boxes in the image
if not use_masks:
if args.only_train_prototypes == False:
# Create negative boxes and add them to the batch
neg_boxes = generate_additional_boxes(images, boxes, args.iou_threshold, args.min_neg_size, args.max_neg_size, args.num_neg)
neg_labels = torch.full((neg_boxes.shape[0], neg_boxes.shape[1]), -2, dtype=torch.long)
boxes = torch.cat([boxes, neg_boxes], dim=1)
labels = torch.cat([labels, neg_labels], dim=1)
boxes = custom_xywh2xyxy(boxes)
images = images.float().to(device)
boxes = boxes.to(device)
labels = labels.to(device)
# Forward pass
logits = model(prepare_image_for_backbone(images, args.backbone_type), boxes, labels, aggregation=args.aggregation)
if args.only_train_prototypes == False:
# Assign bg_labels to background examples
bg_logits = torch.argmax(logits[:, :, num_cls:], dim=-1) + num_cls
labels[labels == -2] = bg_logits[labels == -2]
else:
images = images.float().to(device)
masks = boxes.float().to(device)
labels = labels.to(device)
# Forward pass
logits = model(prepare_image_for_backbone(images, args.backbone_type), masks, labels, aggregation=args.aggregation)
# Compute loss
B, N, C = logits.shape
loss = criterion(logits.view(-1, C), labels.view(-1))
# If no valid box, continue
has_nan = torch.isnan(loss).any().item()
if has_nan:
continue
# Backward and optimizer steps
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# Validation loop
with torch.no_grad():
total_correct = 0
total_samples = 0
true_labels = []
total_predicted_labels = []
for i, batch in tqdm(enumerate(val_dataloader), total=len(val_dataloader), desc=f'Val Epoch {epoch + 1}/{args.num_epochs}', leave=False):
images, boxes, labels, _ = batch
# Convert map dataset labels classes to the model prototype indices
labels = map_labels_to_prototypes(val_dataloader.dataset.get_categories(), model.get_categories(), labels)
if not use_masks:
if args.only_train_prototypes == False:
# Create negative boxes and add them to the batch
neg_boxes = generate_additional_boxes(images, boxes, args.iou_threshold, args.min_neg_size, args.max_neg_size, args.num_neg)
neg_labels = torch.full((neg_boxes.shape[0], neg_boxes.shape[1]), -2, dtype=torch.long)
boxes = torch.cat([boxes, neg_boxes], dim=1)
labels = torch.cat([labels, neg_labels], dim=1)
boxes = custom_xywh2xyxy(boxes)
images = images.float().to(device)
boxes = boxes.to(device)
labels = labels.to(device)
# Forward pass
logits = model(prepare_image_for_backbone(images, args.backbone_type), boxes, labels, aggregation=args.aggregation)
if args.only_train_prototypes == False:
# Assign bg_labels to background examples
bg_logits = torch.argmax(logits[:, :, num_cls:], dim=-1) + num_cls
labels[labels == -2] = bg_logits[labels == -2]
else:
images = images.float().to(device)
masks = boxes.float().to(device)
labels = labels.to(device)
# Forward pass
logits = model(prepare_image_for_backbone(images, args.backbone_type), masks, aggregation=args.aggregation)
# Compute loss
B, N, C = logits.shape
loss = criterion(logits.view(-1, C), labels.view(-1))
# if loss contains nans continue
has_nan = torch.isnan(loss).any().item()
if has_nan:
continue
# Calculate predicted labelsnex
predicted_labels = torch.argmax(logits, dim=-1).view(-1)[labels.view(-1)>=0]
# Count correct predictions
total_correct += torch.sum(predicted_labels == labels[labels != -1]).item()
total_samples += labels[labels != -1].numel()
total_predicted_labels += predicted_labels.cpu().tolist()
true_labels += labels[labels != -1].cpu().tolist()
val_loss += loss.item()
accuracy = total_correct / total_samples
# Update the learning rate
scheduler.step()
print(f"Epoch [{epoch + 1}/{args.num_epochs}] Train Loss: {total_loss / len(dataloader)} | Val Loss: {val_loss / len(val_dataloader)} \nVal Accuracy: {accuracy} --> ({total_correct}/{total_samples})")
# Print precision, recall, and accuracy for each class every 10 epochs
if (epoch + 1) % 10 == 0:
# Convert the predicted labels and true labels to numpy arrays
predicted_labels_np = np.array(total_predicted_labels)
true_labels_np = np.array(true_labels)
# Get the classification report
report = classification_report(true_labels_np, predicted_labels_np, output_dict=True, zero_division=1)
# Print precision, recall, and accuracy for each class
for cls in range(num_cls):
cls_report = report.get(str(cls), {}) # Use .get() to handle KeyError
precision = cls_report.get('precision', -1) # Default to -1.0 if precision is not available
recall = cls_report.get('recall', -1) # Default to -1.0 if recall is not available
f1_score = cls_report.get('f1-score', -1) # Default to -1.0 if F1-score is not available
support = cls_report.get('support', 0) # Default to 0 if support is not available
# Calculate accuracy for the current class
correct_indices = (true_labels_np == cls) & (predicted_labels_np == cls)
accuracy = correct_indices.sum() / max(1, support) # Avoid division by zero
print(f'{model.get_categories()[cls]}: Pr={precision:.4f}, Re={recall:.4f}, F1={f1_score:.4f}, Acc={accuracy:.4f}')
return model
def save_results(learned_embedding, class_names, save_dir):
learned_prototypes = learned_embedding[:len(class_names)]
prototypes_dict = {
'prototypes': learned_prototypes,
'label_names': class_names
}
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
# Save learned prototypes and bg_prototypes
torch.save(prototypes_dict, os.path.join(save_dir, 'prototypes.pth'))
print('Saved {} prototypes to {}'.format(learned_prototypes.shape[0], os.path.join(save_dir, 'prototypes.pth')))
if args.bg_prototypes_path is not None:
learned_bg_prototypes = learned_embedding[len(class_names):]
bg_class_names = ['bg_class_{}'.format(i+1) for i in range(learned_bg_prototypes.shape[0])]
bg_prototypes_dict = {
'prototypes': learned_bg_prototypes,
'label_names': bg_class_names
}
torch.save(bg_prototypes_dict, os.path.join(save_dir, 'bg_prototypes.pth'))
print('Saved {} bg prototypes to {}'.format(learned_bg_prototypes.shape[0], os.path.join(save_dir, 'bg_prototypes.pth')))
def main(args):
print('Setting up training...')
# Initialize dataloaders
train_dataloader, val_dataloader = init_dataloaders(args)
# Load model
model, device = prepare_model(args)
# Perform training
model = train(args, model, train_dataloader, val_dataloader, device)
# Save model
if args.save_dir is not None:
print("Training finished. Saving model...")
save_results(model.embedding.detach().cpu(), model.class_names, args.save_dir)
print('Done!')
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--train_root_dir', type=str)
parser.add_argument('--val_root_dir', type=str)
parser.add_argument('--train_annotations_file', type=str)
parser.add_argument('--val_annotations_file', type=str)
parser.add_argument('--prototypes_path', type=str, default=None)
parser.add_argument('--bg_prototypes_path', type=str, default=None)
parser.add_argument('--aggregation', type=str, default='mean')
parser.add_argument('--save_dir', type=str, default=None)
parser.add_argument('--annotations', type=str, default='box')
parser.add_argument('--backbone_type', type=str, default='dinov2')
parser.add_argument('--target_size', nargs=2, type=int, metavar=('width', 'height'), default=(560, 560))
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--iou_thr', type=float, default=0.1)
parser.add_argument('--conf_thres', type=float, default=0.2)
parser.add_argument('--scale_factor', nargs='+', type=int, default=2)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--lr_step_size', type=int, default=30)
parser.add_argument('--lr_decay', type=int, default=0.1)
parser.add_argument('--num_neg', type=int, default=0)
parser.add_argument('--min_neg_size', type=int, default=5)
parser.add_argument('--max_neg_size', type=int, default=150)
parser.add_argument('--iou_threshold', type=float, default=0.05)
parser.add_argument('--only_train_prototypes', action='store_true', default=False)
args = parser.parse_args()
main(args)