diff --git a/xeofs/models/cca.py b/xeofs/models/cca.py index 0d3029e..a32d9aa 100644 --- a/xeofs/models/cca.py +++ b/xeofs/models/cca.py @@ -218,13 +218,11 @@ def _fit_algorithm(self, views: List[DataArray]) -> Self: class CCA(CCABaseModel): - r"""Canonical Correlation Analysis (CCA) model. + r"""Canonical Correlation Analysis. - Regularised CCA (canonical ridge) model. - - CCA identifies linear combinations of variables from multiple datasets that - maximize their mutual correlations. An optional regularisation parameter can be used to - improve the conditioning of the covariance matrix. + Canonical Correlation Analysis (CCA) identifies linear combinations of variables from multiple datasets that + maximize their mutual correlations. An optional regularisation parameter (ridge regression) + can be used to improve the conditioning of the covariance matrix. The objective function of (regularised) CCA is: diff --git a/xeofs/models/eof.py b/xeofs/models/eof.py index 3f6cfa7..367b8cc 100644 --- a/xeofs/models/eof.py +++ b/xeofs/models/eof.py @@ -11,9 +11,10 @@ class EOF(_BaseModel): - """Empirical Orthogonal Functions (EOF) analysis. + """EOF analysis. - More commonly known as Principal Component Analysis (PCA). + Empirical Orthogonal Functions (EOF) analysis, more commonly known + as Principal Component Analysis (PCA). Parameters ---------- @@ -236,7 +237,7 @@ def explained_variance_ratio(self) -> DataArray: class ComplexEOF(EOF): - """Complex Empirical Orthogonal Functions (Complex EOF) analysis. + """Complex EOF analysis. The Complex EOF analysis [1]_ [2]_ [3]_ [4]_ (also known as Hilbert EOF analysis) applies a Hilbert transform to the data before performing the standard EOF analysis. diff --git a/xeofs/models/gwpca.py b/xeofs/models/gwpca.py index 1293077..4d317c6 100644 --- a/xeofs/models/gwpca.py +++ b/xeofs/models/gwpca.py @@ -26,9 +26,9 @@ class GWPCA(_BaseModel): - """Geographically weighted PCA (GWPCA). + """Geographically weighted PCA. - GWPCA [1]_ uses a geographically weighted approach to perform PCA for + Geographically weighted PCA (GWPCA) [1]_ uses a geographically weighted approach to perform PCA for each observation in the dataset based on its local neighbors. The neighbors for each observation are determined based on the provided diff --git a/xeofs/models/mca.py b/xeofs/models/mca.py index 8d97b73..c2ebebc 100644 --- a/xeofs/models/mca.py +++ b/xeofs/models/mca.py @@ -13,7 +13,7 @@ class MCA(_BaseCrossModel): - """Maximum Covariance Analyis (MCA). + """Maximum Covariance Analyis. MCA is a statistical method that finds patterns of maximum covariance between two datasets. @@ -546,7 +546,7 @@ def heterogeneous_patterns(self, correction=None, alpha=0.05): class ComplexMCA(MCA): - """Complex Maximum Covariance Analysis (MCA). + """Complex MCA. Complex MCA, also referred to as Analytical SVD (ASVD) by Elipot et al. (2017) [1]_, enhances traditional MCA by accommodating both amplitude and phase information. diff --git a/xeofs/models/opa.py b/xeofs/models/opa.py index 6db9916..3bb1189 100644 --- a/xeofs/models/opa.py +++ b/xeofs/models/opa.py @@ -11,13 +11,11 @@ class OPA(_BaseModel): - """Optimal Persistence Analysis (OPA). + """Optimal Persistence Analysis. - OPA identifies the optimal persistence patterns or - optimally persistent patterns (OPP) with the - largest decorrelation time in a time-varying field. Introduced by DelSole - in 2001 [1]_, and further developed in 2006 [2]_, it's a method used to - find patterns whose time series show strong persistence over time. + Optimal Persistence Analysis (OPA) [1]_ [2]_ identifies the patterns with the + largest decorrelation time in a time-varying field, known as optimal + persistence patterns or optimally persistent patterns (OPP). Parameters ---------- @@ -46,8 +44,8 @@ class OPA(_BaseModel): References ---------- - .. [1] DelSole, T., 2001. Optimally Persistent Patterns in Time-Varying Fields. Journal of the Atmospheric Sciences 58, 1341–1356. https://doi.org/10.1175/1520-0469(2001)058<1341:OPPITV>2.0.CO;2 - .. [2] DelSole, T., 2006. Low-Frequency Variations of Surface Temperature in Observations and Simulations. Journal of Climate 19, 4487–4507. https://doi.org/10.1175/JCLI3879.1 + .. [1] DelSole, T. Optimally Persistent Patterns in Time-Varying Fields. Journal of the Atmospheric Sciences 58, 1341–1356 (2001). + .. [2] DelSole, T. Low-Frequency Variations of Surface Temperature in Observations and Simulations. Journal of Climate 19, 4487–4507 (2006). Examples --------