-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscheduler.py
115 lines (95 loc) · 3.42 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from bisect import bisect_right
import torch
import numpy as np
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
optimizer,
milestones,
gamma=0.1,
warmup_factor=1.0 / 1.0,
warmup_iters=1,
last_epoch=-1,
reference_batch_size=128,
lr=[]
):
if not list(milestones) == sorted(milestones):
raise ValueError(
"Milestones should be a list of" " increasing integers. Got {}",
milestones,
)
self.milestones = milestones
self.gamma = gamma
self.warmup_factor = warmup_factor
self.warmup_iters = warmup_iters
self.batch_size = 1
self.reference_batch_size = reference_batch_size
self.optimizer = optimizer
self.base_lrs = []
for _ in self.optimizer.param_groups:
self.base_lrs.append(lr)
self.last_epoch = last_epoch
if not isinstance(optimizer, torch.optim.Optimizer):
raise TypeError('{} is not an Optimizer'.format(
type(optimizer).__name__))
self.optimizer = optimizer
if last_epoch == -1:
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
last_epoch = 0
self.last_epoch = last_epoch
self.optimizer._step_count = 0
self._step_count = 0
self.step(last_epoch)
def set_batch_size(self, batch_size):
self.batch_size = batch_size
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
def get_lr(self):
warmup_factor = 1
if self.last_epoch < self.warmup_iters:
alpha = float(self.last_epoch) / self.warmup_iters
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
return [
base_lr
* warmup_factor
* self.gamma ** bisect_right(self.milestones, self.last_epoch)
# * float(self.batch_size)
# / float(self.reference_batch_size)
for base_lr in self.base_lrs
]
def state_dict(self):
return {
"last_epoch": self.last_epoch
}
def load_state_dict(self, state_dict):
self.__dict__.update(dict(last_epoch=state_dict["last_epoch"]))
class ComboMultiStepLR:
def __init__(
self,
optimizers, base_lr,
**kwargs
):
self.schedulers = dict()
for name, opt in optimizers.items():
self.schedulers[name] = WarmupMultiStepLR(opt, lr=base_lr, **kwargs)
self.last_epoch = 0
def set_batch_size(self, batch_size):
for x in self.schedulers.values():
x.set_batch_size(batch_size)
def step(self, epoch=None):
for x in self.schedulers.values():
x.step(epoch)
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
def state_dict(self):
return {key: value.state_dict() for key, value in self.schedulers.items()}
def load_state_dict(self, state_dict):
for k, x in self.schedulers.items():
x.load_state_dict(state_dict[k])
last_epochs = [x.last_epoch for k, x in self.schedulers.items()]
assert np.all(np.asarray(last_epochs) == last_epochs[0])
self.last_epoch = last_epochs[0]
def start_epoch(self):
return self.last_epoch