Implementation of the 1st solution for AutoNUE@CVPR 2021 Challenge Semenatic Segmentation Track based on PaddlePaddle.
System Requirements:
- PaddlePaddle == 2.0.2
- Python >= 3.6+
Highly recommend you install the GPU version of PaddlePaddle, due to large overhead of segmentation models, otherwise it could be out of memory while running the models. For more detailed installation tutorials, please refer to the official website of PaddlePaddle。
You should use API Calling method to install PaddleSeg for flexible development.
pip install paddleseg==2.5.0
Firstly, you need to to download and convert the India Driving Dataset following the instructions of Segmentation Track. IDD_Dectection dataset also need for pseudo-labeling.
And then, you need to organize data following the below structure.
IDD_Segmentation
|
|--leftImg8bit
| |--train
| |--val
| |--test
|
|--gtFine
| |--train
| |--val
| |--test
We make three contributions and managed to rank 1st.
- Progressively Segmentation
- Leverage IDD_Detection Dataset to generate extre training samples by pseudo-labeling.
- Decoder-enhanced Swin Transformer
- Download pretrained weights on Mapillary.
mkdir -p pretrain && cd pretrain
wget https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ocrnet_hrnetw48_mapillary/pretrained.pdparams
cd ..
- Modify
scripts/train.py
line 27 withfrom core.val import evaluate
- Run the training script.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \
--config configs/[email protected] --use_vdl \
--save_dir saved_model/sscale_auto_nue_map+city@1920 --save_interval 2000 --num_workers 2 --do_eval
- Replace
scripts/train.py
line 27 'from core.val import evaluate' withfrom core.val_crop import evaluate
- Run
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \
--config configs/auto_nue_map+city_crop.yml --use_vdl \
--save_dir saved_model/auto_nue_map+city_crop --save_interval 2000 --num_workers 2 --do_eval
First you need to organize the IDD_Detection dataset as follow:
IDD_Detection
|
|--JPEGImages
|--Annotations
where JPEGImages
and Annotation
are images and xml files collected from IDD_Detection/FrontFar
and IDD_Detection/FrontNear
two folders.
And Then:
- Replace
AutoNUE21/predict.py
line 22from paddleseg.core import predict
withfrom core.predict_generate_autolabel.py import predictAutolabel
- Modity
AutoNUE21/predict.py
line 156predict(
withpredictAutolabel(
- Run
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch predict.py --config configs/[email protected] --model_path saved_model/sscale_auto_nue_map+city@1920/best_model/model.pdparams --image_path data/IDD_Detection/JPEGImages --save_dir detection_out --aug_pred --scales 1.0 1.5 2.0 --flip_horizontal
- Auto-box
traffic lights
andtraffic sign
two classes from bounding box annotation by runningtools/IDD_labeling.py
- Put the generated
pred_refine
folder underdata/IDD_Detection
- Modify
scripts/train.py
line 27 withfrom core.val import evaluate
- Train these pseudo labels with fine-annotated sample:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \
--config configs/auto_nue_auto_label.yml --use_vdl \
--save_dir saved_model/auto_nue_auto_label --save_interval 2000 --num_workers 2 --do_eval
- Download pretrained weights on Mapillary.
cd pretrain
wget https://bj.bcebos.com/paddleseg/dygraph/cityscapes/swin_mla_p4w7_mapillary/pretrained_swin.pdparams
cd ..
- Run the training script.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \
--config configs/swin_transformer_mla_base_patch4_window7_160k_autonue.yml --use_vdl \
--save_dir saved_model/swin_transformer_mla_autonue --save_interval 2000 --num_workers 2 --do_eval
- Run the testing script.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch predict.py --config configs/swin_transformer_mla_base_patch4_window7_160k_autonue.yml --model_path saved_model/swin_transformer_mla_autonue/best_model/model.pdparams --image_path data/IDD_Segmentation/leftImg8bit/test/ --save_dir test_out_swin --aug_pred --scales 1.0 1.5 2.0 --flip_horizontal
We provide a predict script for ensembling baseline
, pseudo-labeling
and rps
.
Just running:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch predict_ensemble_three.py --config configs/[email protected] --config_1 configs/auto_nue_auto_label.yml --config_crop configs/auto_nue_map+city_crop.yml --model_path saved_model/sscale_auto_nue_map+city@1920/best_model/model.pdparams --model_path_1 saved_model/auto_nue_auto_label/best_model/model.pdparams --model_path_crop saved_model/auto_nue_map+city_crop/best_model/model.pdparams --image_path data/IDD_Segmentation/leftImg8bit/test/ --save_dir test_out --aug_pred --scales 1.0 1.5 2.0 --flip_horizontal