forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segnext_mscan_s_cityscapes_1024x1024_160k.yml
62 lines (55 loc) · 1.2 KB
/
segnext_mscan_s_cityscapes_1024x1024_160k.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_base_: '../_base_/cityscapes.yml'
batch_size: 2
iters: 160000
train_dataset:
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 1024]
category_max_ratio: 0.75
- type: RandomHorizontalFlip
- type: RandomDistort
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
_inherited_: False
type: AdamW
weight_decay: 0.01
custom_cfg:
- name: head
lr_mult: 10.0
- name: norm
weight_decay_mult: 0.0
loss:
types:
- type: CrossEntropyLoss
coef: [1]
lr_scheduler:
type: PolynomialDecay
warmup_iters: 1500
warmup_start_lr: 1.0e-6
learning_rate: 0.00006
end_lr: 0.0
power: 1.0
model:
type: SegNeXt
backbone:
type: MSCAN_S
pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/mscan_s_imagenet_pretrained.zip
num_classes: 19
decoder_cfg:
channels: 256
ham_channels: 256
ham_kwargs:
MD_R: 16
dropout_rate: 0.1
align_corners: False