forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
picodet_postprocess.py
227 lines (204 loc) · 8.54 KB
/
picodet_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from scipy.special import softmax
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(
current_box, axis=0), )
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
class PicoDetPostProcess(object):
"""
Args:
input_shape (int): network input image size
ori_shape (int): ori image shape of before padding
scale_factor (float): scale factor of ori image
enable_mkldnn (bool): whether to open MKLDNN
"""
def __init__(self,
input_shape,
ori_shape,
scale_factor,
strides=[8, 16, 32, 64],
score_threshold=0.4,
nms_threshold=0.5,
nms_top_k=1000,
keep_top_k=100):
self.ori_shape = ori_shape
self.input_shape = input_shape
self.scale_factor = scale_factor
self.strides = strides
self.score_threshold = score_threshold
self.nms_threshold = nms_threshold
self.nms_top_k = nms_top_k
self.keep_top_k = keep_top_k
def warp_boxes(self, boxes, ori_shape):
"""Apply transform to boxes
"""
width, height = ori_shape[1], ori_shape[0]
n = len(boxes)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
n * 4, 2) # x1y1, x2y2, x1y2, x2y1
# xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
return xy.astype(np.float32)
else:
return boxes
def __call__(self, scores, raw_boxes):
batch_size = raw_boxes[0].shape[0]
reg_max = int(raw_boxes[0].shape[-1] / 4 - 1)
out_boxes_num = []
out_boxes_list = []
for batch_id in range(batch_size):
# generate centers
decode_boxes = []
select_scores = []
for stride, box_distribute, score in zip(self.strides, raw_boxes,
scores):
box_distribute = box_distribute[batch_id]
score = score[batch_id]
# centers
fm_h = self.input_shape[0] / stride
fm_w = self.input_shape[1] / stride
h_range = np.arange(fm_h)
w_range = np.arange(fm_w)
ww, hh = np.meshgrid(w_range, h_range)
ct_row = (hh.flatten() + 0.5) * stride
ct_col = (ww.flatten() + 0.5) * stride
center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1)
# box distribution to distance
reg_range = np.arange(reg_max + 1)
box_distance = box_distribute.reshape((-1, reg_max + 1))
box_distance = softmax(box_distance, axis=1)
box_distance = box_distance * np.expand_dims(reg_range, axis=0)
box_distance = np.sum(box_distance, axis=1).reshape((-1, 4))
box_distance = box_distance * stride
# top K candidate
topk_idx = np.argsort(score.max(axis=1))[::-1]
topk_idx = topk_idx[:self.nms_top_k]
center = center[topk_idx]
score = score[topk_idx]
box_distance = box_distance[topk_idx]
# decode box
decode_box = center + [-1, -1, 1, 1] * box_distance
select_scores.append(score)
decode_boxes.append(decode_box)
# nms
bboxes = np.concatenate(decode_boxes, axis=0)
confidences = np.concatenate(select_scores, axis=0)
picked_box_probs = []
picked_labels = []
for class_index in range(0, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > self.score_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = bboxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(
box_probs,
iou_threshold=self.nms_threshold,
top_k=self.keep_top_k, )
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if len(picked_box_probs) == 0:
out_boxes_list.append(np.empty((0, 4)))
out_boxes_num.append(0)
else:
picked_box_probs = np.concatenate(picked_box_probs)
# resize output boxes
picked_box_probs[:, :4] = self.warp_boxes(
picked_box_probs[:, :4], self.ori_shape[batch_id])
im_scale = np.concatenate([
self.scale_factor[batch_id][::-1],
self.scale_factor[batch_id][::-1]
])
picked_box_probs[:, :4] /= im_scale
# clas score box
out_boxes_list.append(
np.concatenate(
[
np.expand_dims(
np.array(picked_labels),
axis=-1), np.expand_dims(
picked_box_probs[:, 4], axis=-1),
picked_box_probs[:, :4]
],
axis=1))
out_boxes_num.append(len(picked_labels))
out_boxes_list = np.concatenate(out_boxes_list, axis=0)
out_boxes_num = np.asarray(out_boxes_num).astype(np.int32)
return out_boxes_list, out_boxes_num