forked from larryniven/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.cc
283 lines (229 loc) · 9.81 KB
/
cnn.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include "nn/cnn.h"
namespace cnn {
transcriber::~transcriber()
{}
bool transcriber::require_param() const
{
return true;
}
conv_transcriber::conv_transcriber()
: p1(0), p2(0), d1(1), d2(1)
{}
conv_transcriber::conv_transcriber(int p1, int p2, int d1, int d2)
: p1(p1), p2(p2), d1(d1), d2(d2)
{}
std::shared_ptr<autodiff::op_t>
conv_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
auto k = autodiff::corr_linearize(input,
tensor_tree::get_var(var_tree->children[0]), p1, p2, d1, d2);
auto z = autodiff::mul(k, tensor_tree::get_var(var_tree->children[0]));
auto b = autodiff::rep_row_to(tensor_tree::get_var(var_tree->children[1]), z);
return autodiff::relu(autodiff::add(z, b));
}
max_pooling_transcriber::max_pooling_transcriber(
int dim1, int dim2)
: dim1(dim1), dim2(dim2), stride1(dim1), stride2(dim2)
{}
max_pooling_transcriber::max_pooling_transcriber(
int dim1, int dim2, int stride1, int stride2)
: dim1(dim1), dim2(dim2), stride1(stride1), stride2(stride2)
{}
bool max_pooling_transcriber::require_param() const
{
return false;
}
std::shared_ptr<autodiff::op_t>
max_pooling_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
return autodiff::pool_max(input, dim1, dim2, stride1, stride2);
}
std::shared_ptr<autodiff::op_t>
fc_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
auto& t = autodiff::get_output<la::cpu::tensor_like<double>>(input);
std::vector<unsigned int> sizes = t.sizes();
unsigned int dim = 1;
while (sizes.size() > 1) {
dim *= sizes.back();
sizes.pop_back();
}
sizes.push_back(dim);
auto v = autodiff::reshape(input, sizes);
auto z = autodiff::mul(v, tensor_tree::get_var(var_tree->children[0]));
auto b = autodiff::rep_row_to(tensor_tree::get_var(var_tree->children[1]), z);
return autodiff::add(z, b);
}
std::shared_ptr<autodiff::op_t>
framewise_fc_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
auto& t = autodiff::get_output<la::cpu::tensor<double>>(input);
auto m = autodiff::reshape(input, {t.size(0), t.vec_size() / t.size(0)});
auto z = autodiff::mul(m, tensor_tree::get_var(var_tree->children[0]));
auto b = autodiff::rep_row_to(tensor_tree::get_var(var_tree->children[1]), z);
return autodiff::add(z, b);
}
bool relu_transcriber::require_param() const
{
return false;
}
std::shared_ptr<autodiff::op_t>
relu_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
return autodiff::relu(input);
}
dropout_transcriber::dropout_transcriber(double prob, std::default_random_engine& gen)
: prob(prob), gen(gen)
{}
bool dropout_transcriber::require_param() const
{
return false;
}
std::shared_ptr<autodiff::op_t>
dropout_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
return autodiff::emul(input, autodiff::dropout_mask(input, prob, gen));
}
std::shared_ptr<autodiff::op_t>
multilayer_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
std::shared_ptr<autodiff::op_t> feat = input;
int j = 0;
for (int i = 0; i < layers.size(); ++i) {
if (layers[i]->require_param()) {
feat = (*layers[i])(var_tree->children[j], feat);
++j;
} else {
feat = (*layers[i])(nullptr, feat);
}
}
return feat;
}
bool logsoftmax_transcriber::require_param() const
{
return false;
}
std::shared_ptr<autodiff::op_t>
logsoftmax_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
return autodiff::logsoftmax(input);
}
densenet_transcriber::densenet_transcriber(int transcriber)
: transcriber(transcriber)
{}
std::shared_ptr<autodiff::op_t>
densenet_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
std::vector<std::shared_ptr<autodiff::op_t>> transcribers;
int ell = 0;
std::shared_ptr<autodiff::op_t> feat = input;
for (int i = 0; i < transcriber; ++i) {
auto t = autodiff::corr_linearize(feat,
tensor_tree::get_var(var_tree->children[ell + i]));
transcribers.push_back(t);
std::vector<std::shared_ptr<autodiff::op_t>> muls;
for (int k = 0; k < i + 1; ++k) {
muls.push_back(autodiff::mul(tensor_tree::get_var(var_tree->children[ell + k]),
transcribers[k]));
}
feat = autodiff::relu(autodiff::add(muls));
ell += i + 1;
}
return input;
}
std::vector<std::shared_ptr<autodiff::op_t>> ifo_pooling(
std::vector<std::shared_ptr<autodiff::op_t>> input,
std::vector<std::shared_ptr<autodiff::op_t>> input_gate,
std::vector<std::shared_ptr<autodiff::op_t>> forget_gate,
std::vector<std::shared_ptr<autodiff::op_t>> output_gate)
{
std::vector<std::shared_ptr<autodiff::op_t>> result;
std::shared_ptr<autodiff::op_t> cell = nullptr;
for (int i = 0; i < input.size(); ++i) {
if (cell == nullptr) {
cell = autodiff::emul(input[i], input_gate[i]);
} else {
cell = autodiff::add(autodiff::emul(input[i], input_gate[i]),
autodiff::emul(cell, forget_gate[i]));
}
result.push_back(autodiff::emul(cell, output_gate[i]));
}
return result;
}
std::vector<std::shared_ptr<autodiff::op_t>> conv_ifo_pooling(
std::shared_ptr<autodiff::op_t> output,
std::shared_ptr<autodiff::op_t> input_gate,
std::shared_ptr<autodiff::op_t> forget_gate,
std::shared_ptr<autodiff::op_t> output_gate,
int size)
{
std::vector<std::shared_ptr<autodiff::op_t>> output_vec;
std::vector<std::shared_ptr<autodiff::op_t>> input_gate_vec;
std::vector<std::shared_ptr<autodiff::op_t>> forget_gate_vec;
std::vector<std::shared_ptr<autodiff::op_t>> output_gate_vec;
for (int i = 0; i < size; ++i) {
output_vec.push_back(autodiff::row_at(output, i));
input_gate_vec.push_back(autodiff::row_at(input_gate, i));
forget_gate_vec.push_back(autodiff::row_at(forget_gate, i));
output_gate_vec.push_back(autodiff::row_at(output_gate, i));
}
return ifo_pooling(output_vec, input_gate_vec, forget_gate_vec, output_gate_vec);
}
std::vector<std::shared_ptr<autodiff::op_t>> conv_fo_pooling(
std::shared_ptr<autodiff::op_t> output,
std::shared_ptr<autodiff::op_t> forget_gate,
std::shared_ptr<autodiff::op_t> output_gate,
int size)
{
auto one = autodiff::resize_as(forget_gate, 1);
auto input_gate = autodiff::sub(one, forget_gate);
return conv_ifo_pooling(output, input_gate, forget_gate, output_gate, size);
}
conv_fo_pooling_transcriber::conv_fo_pooling_transcriber(
unsigned int rows, unsigned int cols,
std::shared_ptr<transcriber> input_conv,
std::shared_ptr<transcriber> forget_gate_conv,
std::shared_ptr<transcriber> output_gate_conv)
: rows(rows), cols(cols)
, input_conv(input_conv), forget_gate_conv(forget_gate_conv)
, output_gate_conv(output_gate_conv)
{}
std::shared_ptr<autodiff::op_t>
conv_fo_pooling_transcriber::operator()(std::shared_ptr<tensor_tree::vertex> var_tree,
std::shared_ptr<autodiff::op_t> input)
{
auto input_lin = autodiff::corr_linearize(input,
tensor_tree::get_var(var_tree->children[0]->children[0]));
auto input_res = autodiff::mul(input_lin,
tensor_tree::get_var(var_tree->children[0]->children[0]));
auto input_bias = autodiff::rep_row_to(
tensor_tree::get_var(var_tree->children[0]->children[1]), input_res);
input_res = autodiff::add(input_res, input_bias);
auto forget_res = autodiff::mul(input_lin,
tensor_tree::get_var(var_tree->children[1]->children[0]));
auto forget_bias = autodiff::rep_row_to(
tensor_tree::get_var(var_tree->children[1]->children[1]), forget_res);
forget_res = autodiff::add(forget_res, forget_bias);
auto output_res = autodiff::mul(input_lin,
tensor_tree::get_var(var_tree->children[1]->children[0]));
auto output_bias = autodiff::rep_row_to(
tensor_tree::get_var(var_tree->children[1]->children[1]), output_res);
output_res = autodiff::add(output_res, output_bias);
auto& t = autodiff::get_output<la::tensor_like<double>>(tensor_tree::get_var(
var_tree->children[0]->children[1]));
input_res = autodiff::reshape(input_res, { rows, cols * t.size(0) });
forget_res = autodiff::reshape(forget_res, { rows, cols * t.size(0) });
output_res = autodiff::reshape(output_res, { rows, cols * t.size(0) });
return autodiff::reshape(autodiff::row_cat(conv_fo_pooling(
input_res, forget_res, output_res, rows)), { rows, cols, t.size(0) });
}
}