-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscratch.py
138 lines (105 loc) · 3.06 KB
/
scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import functools
import typing
import random
from itertools import takewhile
def big_as():
a = [1,2,3,4,5]
for a in a:
if a > 5:
yield a
a = [1,2,3]
b = [4,5,6]
c = zip(a,b)
@functools.lru_cache(256)
def gauss(n):
if n % 2 == 0:
return (n + 1) * (n / 2)
else:
return n + gauss(n - 1)
# print(gauss(10000))
@functools.lru_cache(256)
def fibonacci(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n - 2) + fibonacci(n - 1)
# print(fibonacci(300))
def cube_levels(n):
for x in range(1, n):
print(f"x: {x} cube: {x ** 3} level: {(x ** 3) * gauss(x)}")
## cube_levels(20)
def badtype(x: int) -> str:
return x * 2
badtype(4)
def bogobench(maxn = 50):
for i in range(2, maxn):
count = 0
sorted = list(range(i))
sorted.sort()
shuffled = random.sample(sorted, k=len(sorted)) # shuffle immutable
while not sorted == shuffled:
shuffled = random.sample(sorted, k=len(sorted))
count += 1
else:
print(f"n = {i} :: count = {count} :: {shuffled}")
# bogobench(15)
def aux(x, m):
print(x)
if x > m:
return True
else:
return False
for z in takewhile(lambda lx: lx >= 50, list(range(1,100))):
print(z)
# hm, well, you see what I'm trying to do...
# (thinking emoji....)
import random
import numpy as np
def simulated_annealing(f, x0, T=1.0, T_min=0.00001, alpha=0.9, max_steps=1000):
"""
Implements the simulated annealing algorithm to find the global minimum or maximum of a function.
Args:
f: The function to optimize.
x0: The initial value for the optimization.
T: The initial temperature for the annealing process.
T_min: The minimum temperature for the annealing process.
alpha: The temperature decay rate.
max_steps: The maximum number of steps to take before ending the optimization.
Returns:
The global minimum or maximum of the function.
"""
x = x0
# Start the annealing process
for step in range(max_steps):
# Calculate the current value of the function
f_x = f(x)
# Generate a new random value
x_new = x + random.uniform(-1, 1)
# Calculate the value of the function at the new value
f_x_new = f(x_new)
# Calculate the change in value of the function
delta_f = f_x_new - f_x
# If the new value is better than the current value, always accept it
if delta_f < 0:
x = x_new
else:
# Calculate the probability of accepting the new value
p = 2.0**(-delta_f / T)
# Use the probability to decide whether to accept the new value
if random.uniform(0, 1) < p:
x = x_new
# Decrease the temperature according to the specified decay rate
T = alpha * T
# Stop the optimization when the temperature reaches the minimum value
if T < T_min:
break
return x
# Define the function we want to optimize
def f(x):
return x**2 + 10*np.sin(x)
# Find the global minimum of the function
result = simulated_annealing(f, x0=0, max_steps=100000)
# Print the result
print(result)