-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy path1bitext_expander.cc
330 lines (276 loc) · 10.3 KB
/
1bitext_expander.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/* This file is part of libtrevisan, a modular implementation of
Trevisan's randomness extraction construction.
Copyright (C) 2011-2012, Wolfgang Mauerer <[email protected]>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with libtrevisan. If not, see <http://www.gnu.org/licenses/>. */
// A one-bit extractor based on g-regular graphs as described by Lu
#include<iostream>
#include<fstream>
#include<cstddef>
#include<cstdlib>
#include<gmp.h>
#include "timing.h"
#include "utils.hpp"
#include "1bitext_expander.h"
#ifndef NO_DEBUG
#include "debug.h"
extern int debug_level;
#else
#include "debug_levels.h"
int debug_level = 0;
void debug_msg(int level, const char *fmt, ...) { }
#endif
using namespace std;
void bitext_expander::infer_params() {
SEXP ans;
stringstream call;
call << "do.compute.lu(" << nu << ", " << pp.m << ", " << pp.eps << ", "
<< lambda0 << ")";
r_interp->parse_eval(call.str(), ans);
Rcpp::DataFrame res(ans);
w = Rcpp::as<long double>(res(0));
c = Rcpp::as<vertex_t>(res(1));
l = Rcpp::as<vertex_t>(res(2));
}
uint64_t bitext_expander::compute_k() {
return(h(nu)*pp.n + r*pp.m + 6.0*log((2.0+sqrt(2.0))/pp.eps) - 2.0);
}
void bitext_expander::set_input_data(void *global_rand, struct phys_params &pp) {
bitext::set_input_data(global_rand, pp);
nu = pp.lu_nu;
infer_params();
// Ensure that n is of the form b^2 for some b \in
// \mathbb{N}^{+}, b even (b is sqrt_n in the following)
mpz_t n_gmp;
mpz_init_set_ui(n_gmp, pp.n);
mpz_t sqrt_n_gmp;
mpz_init(sqrt_n_gmp);
if (mpz_root(sqrt_n_gmp, n_gmp, 2) == 0) {
cerr << "(Lu bit extractor) Internal error: n != b^2" << endl;
cerr << "(n=" << pp.n << ")" << endl;
exit(-1);
}
if (mpz_even_p(sqrt_n_gmp) == 0) {
// NOTE: We could also extend the scheme to odd
// bit numbers, but that would unecessarily
// complicate things in the graph calculations
// without benefit.
cerr << "(Lu bit extractor) Error: Only even b (for n=b^2)is supported!"
<< endl;
exit(-1);
}
if (mpz_fits_ulong_p (sqrt_n_gmp) == 0) {
cerr << "(Lu bit extractor) Internal error: m does not fit into vertex_t!"
<< endl;
exit(-1);
}
sqrt_n = mpz_get_ui(sqrt_n_gmp);
// m needs half the amount of bits of n because n = m^2
// => m = sqrt(n) => log(m) = log(n^{1/2}) = 1/2*log(n)
sqrt_n_bits = numbits<vertex_t>(sqrt_n-1); // sqrt_n values fit into [0,sqrt_n-1]
n_bits = 2*sqrt_n_bits;
zb_zb_mask = (static_cast<vertex_t>(1) << sqrt_n_bits) - 1;
if (debug_level >= INFO) {
cerr << "(Lu extractor) bits(n): " << n_bits << ", bits(sqrt(n)): "
<< sqrt_n_bits << endl;
}
// Due diligence
mpz_clear(n_gmp);
mpz_clear(sqrt_n_gmp);
// Compute offsets for the different portions of the initial randomness
// (the actual pointers can differ, but the offsets are invariant)
additional_randomness = 0;
// Offsets are computed in terms of edge_datum_t, and if the amount
// of bits required for one component is not evenly divisible
// by sizeof(edge_datum_t), we round up by one instance of edge_datum_t --
// thus the addition by one.
if (n_bits % BITS_PER_TYPE(edge_datum_t) != 0) {
additional_randomness =
n_bits % BITS_PER_TYPE(edge_datum_t);
walk_bits_offset = n_bits/BITS_PER_TYPE(edge_datum_t) + 1;
} else {
walk_bits_offset = n_bits/BITS_PER_TYPE(edge_datum_t);
}
if ((c*(l-1)*bits_per_edge) % BITS_PER_TYPE(edge_datum_t) != 0) {
additional_randomness +=
(c*(l-1)*bits_per_edge) % BITS_PER_TYPE(edge_datum_t);
select_bits_offset = (c*(l-1)*bits_per_edge)/BITS_PER_TYPE(edge_datum_t) + 1;
} else {
select_bits_offset = (c*(l-1)*bits_per_edge)/BITS_PER_TYPE(edge_datum_t);
}
}
inline vertex_t_s bitext_expander::do_mod(vertex_t_s a, vertex_t_s mod) {
vertex_t_s res = a % mod;
if (res < 0)
res += mod;
return res;
}
size_t bitext_expander::multiple_of(size_t num, size_t mult) {
// Find the smallest n such that n*mult >= num,
// and return n*mult
size_t n = num / mult;
if (num % mult != 0)
return (n+1)*mult;
return n*mult;
}
////////////////////////////////////////////////////////////////////
// NOTE: This function depends on the choice of g-regular graph used
// as basis for the one-bit extractor. Here, we implement the rules
// for a Gabber-Galil expander.
// The number of nodes n=b^2, that is, we operate on
// \mathbbm{Z}_{b} \times \mathbbm{Z}_{b}.
vertex_t bitext_expander::compute_next_vertex(vertex_t curr_vertex,
edge_t next_edge) {
vertex_t_s x, y;
// Compute the upper and lower half of Z_b\otimes Z_b
x = curr_vertex & zb_zb_mask;
y = (curr_vertex & (zb_zb_mask << sqrt_n_bits)) >> sqrt_n_bits;
// We do not need to use gmp for the modulo arithmetic here --
// m uses only (at most) half the bits of vertex_t, so we
// can compute using elementary signed modulo arithmetic
// TODO: Is this really true for -2INT_MAX % INT_MAX?
// And likewise for -(INT_MAX+1) % INT_MAX.
// TODO: This needs to be tested
// cout << " Current vertex: " << curr_vertex << ", next edge: "
// << next_edge << ", ";
switch(next_edge) {
case 0:
x = do_mod(x + 2*y, sqrt_n);
break;
case 1:
x = do_mod(x - 2*y, sqrt_n);
break;
case 2:
x = do_mod(x + (2*y+1), sqrt_n);
break;
case 3:
x = do_mod(x - (2*y+1), sqrt_n);
break;
case 4:
y = do_mod(y + 2*x, sqrt_n);
break;
case 5:
y = do_mod(y - 2*x, sqrt_n);
break;
case 6:
y = do_mod(y + (2*x+1), sqrt_n);
break;
case 7:
y = do_mod(y - (2*x+1), sqrt_n);
break;
default:
cerr << "(Lu bit extractor) Internal error: Edge value=" << next_edge
<< ", maximal value is 7" << endl;
exit(-1);
}
// Compose the result by concatenating <x,y>
vertex_t res = x;
res |= (y << sqrt_n_bits);
// cout << "new vertex: " << res << endl;
return res;
}
// TODO: Check that none of the fixed-precision quantities overflow
// TODO: Include numerical assertions for the invariants
// Determine the required number of random bits for a specific
// parameter set. The required amount may be slightly larger than
// the minimum because of alignment constraints -- this simplifies
// the implementation, but does not cost any significant amount of
// randomness.
vertex_t bitext_expander::num_random_bits() {
// n_bits aligned by bits(sizeof(edge_datum_t))
// c*(l-1)*bits_per_edge aligned by bits(sizeof(edge_datum_t))
// zeta aligned by byte
vertex_t count;
count = multiple_of(numbits<vertex_t>(pp.n),
BITS_PER_TYPE(edge_datum_t));
count += multiple_of(c*(l-1)*bits_per_edge,
BITS_PER_TYPE(edge_datum_t));
count += multiple_of(l, BITS_PER_BYTE);
if (debug_level >= INFO)
cout << "Required bits for n=" << pp.n << ", c="
<< c << ", l=" << l << ": " << count << endl;
return count;
}
bool bitext_expander::extract(void *initial_rand) {
unsigned short res = 0; // Output parity: Even -> 0, Odd -> 1
edge_datum_t *walk_bits;
void *select_bits;
// The initial seed is divided into three portions:
// - numbits(n) bits to select the initial node (n is the number of vertices)
// - c*(l-1)*bits_per_edge bits to perform the random walk (the first of every
// c steps is included in the result). Stored in walk_bits.
// - l bits to decide if the contribution of the i^{th} node is
// included in the result or not. Stored in select_bits
walk_bits = (edge_datum_t*)initial_rand + walk_bits_offset;
select_bits = (edge_datum_t*)walk_bits + select_bits_offset;
if (debug_level >= EXCESSIVE_INFO) {
cerr << "initial_rand: " << initial_rand << ", walk_bits: " << walk_bits
<< ", select_bits: " << select_bits << endl;
}
if (additional_randomness) {
if (debug_level >= EXCESSIVE_INFO) {
cerr << "Information: Requesting " << additional_randomness
<< " bits more randomness than strictly required because of "
<< "alignment constraints." << endl;
}
}
if (debug_level >= EXCESSIVE_INFO)
cout << "Importing "
<< multiple_of(l, BITS_PER_BYTE)/BITS_PER_BYTE
<< " bytes from select_bits" << endl;
bitfield<uint64_t, uint64_t> select_bits_bf;
select_bits_bf.set_raw_data(select_bits,
multiple_of(l, BITS_PER_BYTE)/BITS_PER_BYTE);
bitfield<uint64_t, uint64_t> walk_bits_bf;
walk_bits_bf.set_raw_data(walk_bits, multiple_of(c*(l-1),
BITS_PER_TYPE(edge_datum_t))/BITS_PER_TYPE(edge_datum_t));
// Infer the number of the starting vertex from the initial randomness
if (sizeof(edge_datum_t) < sizeof(vertex_t)) {
cerr << "(Lu bit extractor) Internal error: Assumption " <<
"sizeof(edge_datum_t) < sizeof(vertex_t) failed!" << endl;
exit(-1);
}
vertex_t vertex = *(vertex_t*)initial_rand;
// Since w is aligned on sizeof(edge_datum_t), we can safely assume
// that sizeof(vertex_t) bytes are available for the initial
// vertex. We need, however, zero out the
// bits [n_bits, sizeof(vertex_t)*BITS_PER_BYTE[ that are
// not necessary for the required bit length.
if (n_bits < sizeof(vertex_t)*BITS_PER_BYTE) {
vertex &= ((vertex_t)1 << n_bits) - 1;
}
// After everything is set up, do the random walk.
// In each step, the contribution to the parity result
// is calculated.
// TODO: Double-check all bit arithmetic operations in this part.
edge_t next_edge;
// Take the first of c walk steps, and compute l results this way
uint64_t i, j;
for (i = 0; i < c; i++) {
// The vertex only changes the parity of the result if
// the corresponding bit is set and select_bits_{i} == 1
if (b.get_bit(vertex) && select_bits_bf.get_bit(i)) {
res ^= 1;
// cout << " Flipping parity" << endl;
}
for (j = 0; j < l-1; j++) {
// Choose the next edge from the initial randomness
walk_bits_bf.get_bit_range((i*(l-1)+j)*bits_per_edge,
(i*(l-1)+j+1)*bits_per_edge-1,
reinterpret_cast<uint64_t*>(&next_edge));
// ... and determine the number of the next vertex
vertex = compute_next_vertex(vertex, next_edge);
}
}
if (b.get_bit(vertex) && select_bits_bf.get_bit(i))
res ^= 1;
return res;
}