-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathloss.py
81 lines (71 loc) · 3.03 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torch.nn as nn
from network import Vgg19
class GANLoss(nn.Module):
def __init__(self, gan_mode, device, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.target_real_label = target_real_label
self.target_fake_label = target_fake_label
self.device = device
self.gan_mode = gan_mode
self.Tensor = torch.FloatTensor
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'wgangp':
self.loss = None
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
if target_is_real:
target_tensor = self.Tensor(prediction.size()).fill_(self.target_real_label)
else:
target_tensor = self.Tensor(prediction.size()).fill_(self.target_fake_label)
return target_tensor
def __call__(self, prediction, target_is_real):
if self.gan_mode in ['lsgan']:
if isinstance(prediction[0], list):
loss = 0
for pred_i in prediction:
pred = pred_i[-1]
target_tensor = self.get_target_tensor(pred, target_is_real)
loss += self.loss(pred, target_tensor.to(self.device))
return loss
else:
target_tensor = self.get_target_tensor(prediction[-1], target_is_real)
return self.loss(prediction[-1], target_tensor.to(self.device))
elif self.gan_mode == 'wgangp':
if self.gan_mode == 'wgangp':
if target_is_real:
loss = -prediction.mean()
else:
loss = prediction.mean()
return loss
class VGGLoss(nn.Module):
def __init__(self, device):
super(VGGLoss, self).__init__()
self.vgg = Vgg19().to(device)
self.criterion = nn.L1Loss()
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
class FMLoss(nn.Module):
def __init__(self, device, num_D=3, n_layers=3):
super(FMLoss, self).__init__()
self.num_D = num_D
self.n_layers = n_layers
self.criterion = nn.L1Loss()
self.feat_weight = (4.0 / n_layers + 1)
self.D_weight = 1.0 / num_D
def forward(self, fake, real):
loss = 0
for i in range(self.num_D):
for j in range(len(fake[i])-1):
loss += self.D_weight * self.feat_weight * \
self.criterion(fake[i][j], real[i][j].detach())
return loss