-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy pathupfirdn2d.py
61 lines (47 loc) · 1.81 KB
/
upfirdn2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from collections import abc
import torch
from torch.nn import functional as F
def upfirdn2d(inputs, kernel, up=1, down=1, pad=(0, 0)):
if not isinstance(up, abc.Iterable):
up = (up, up)
if not isinstance(down, abc.Iterable):
down = (down, down)
if len(pad) == 2:
pad = (pad[0], pad[1], pad[0], pad[1])
return upfirdn2d_native(inputs, kernel, *up, *down, *pad)
def upfirdn2d_native(
inputs, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
_, channel, in_h, in_w = inputs.shape
inputs = inputs.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = inputs.shape
kernel_h, kernel_w = kernel.shape
out = inputs.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
)
out = out[
:,
max(-pad_y0, 0): out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0): out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape(
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
)
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
return out.view(-1, channel, out_h, out_w)