-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL28Q1_StirlingAndBell.py
148 lines (129 loc) · 3.87 KB
/
L28Q1_StirlingAndBell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# One Gold Star
# Question 1-star: Stirling and Bell Numbers
# The number of ways of splitting n items in k non-empty sets is called
# the Stirling number, S(n,k), of the second kind. For example, the group
# of people Dave, Sarah, Peter and Andy could be split into two groups in
# the following ways.
# 1. Dave, Sarah, Peter Andy
# 2. Dave, Sarah, Andy Peter
# 3. Dave, Andy, Peter Sarah
# 4. Sarah, Andy, Peter Dave
# 5. Dave, Sarah Andy, Peter
# 6. Dave, Andy Sarah, Peter
# 7. Dave, Peter Andy, Sarah
# so S(4,2) = 7
# If instead we split the group into one group, we have just one way to
# do it.
# 1. Dave, Sarah, Peter, Andy
# so S(4,1) = 1
# or into four groups, there is just one way to do it as well
# 1. Dave Sarah Peter Andy
# so S(4,4) = 1
# If we try to split into more groups than we have people, there are no
# ways to do it.
# The formula for calculating the Stirling numbers is
# S(n, k) = k*S(n-1, k) + S(n-1, k-1)
# Furthermore, the Bell number B(n) is the number of ways of splitting n
# into any number of parts, that is,
# B(n) is the sum of S(n,k) for k =1,2, ... , n.
# Write two procedures, stirling and bell. The first procedure, stirling
# takes as its inputs two positive integers of which the first is the
# number of items and the second is the number of sets into which those
# items will be split. The second procedure, bell, takes as input a
# positive integer n and returns the Bell number B(n).
#constructing a stirling triangle list
def stirling(n,k):
seed = [[1],[1,1],[1,3,1],[1,7,6,1]]
if k > n:
return 0
if n > len(seed):
for i in range(n-len(seed)): #determine number of rows to add
seed.append([1]) #beginrow
for j in range(len(seed)-2): #crawl through each row and add per the formula
#print j,'j' #j is an index to be used to calculate position in row
#print len(seed[-1]),'length seed[-1]' # =multiplier
#print seed[-2][j+1], 'multiplier*seed[-2][j+1]' # * times multiplier
#print seed[-2][j],'seed[-2][j]' #add this at end per formula
seed[-1].append((j+2)*seed[-2][j+1]+seed[-2][j])
seed[-1].append(1) #endrow
return seed[n-1][k-1]
#Udacity's solution using recursion
def stirlingRecursive(n,k):
if n < k:
return 0
if n == 1 or k == 1:
return 1
return k*stirling(n-1,k) + stirling(n-1,k-1)
#two solutions:
def bell(n):
#this calls stirling repeatedly, with less lines of code and less efficiency
#same approach as in Udacity's solutions
'''total = 0
for i in range(n):
total += stirling(n,i+1)
return total'''
#builds the list and sums the last element, reusing the code from above
seed = [[1],[1,1],[1,3,1],[1,7,6,1]]
if n > len(seed):
for i in range(n-len(seed)):
seed.append([1])
for j in range(len(seed)-2):
seed[-1].append((j+2)*seed[-2][j+1]+seed[-2][j])
seed[-1].append(1)
return sum(seed[-1])
#print stirling(1,1)
#>>> 1
#print stirling(2,1)
#>>> 1
#print stirling(2,2)
#>>> 1
#print stirling(2,3)
#>>>0
#print stirling(3,1)
#>>> 1
#print stirling(3,2)
#>>> 3
#print stirling(3,3)
#>>> 1
#print stirling(4,1)
#>>> 1
#print stirling(4,2)
#>>> 7
#print stirling(4,3)
#>>> 6
#print stirling(4,4)
#>>> 1
#print stirling(5,1)
#>>> 1
#print stirling(5,2)
#>>> 15
#print stirling(5,3)
#>>> 25
#print stirling(5,4)
#>>> 10
#print stirling(5,5)
#>>> 1
#print stirling(6,2)
#>>> 31
#print stirling(6,3)
#>>> 90
#print stirling(6,4)
#>>> 65
#print stirling(6,5)
#>>> 15
#print stirlingRecursive(20,15)
#>>> 452329200
#print stirling(20,15)
#>>> 452329200
#print bell(1)
#>>> 1
#print bell(2)
#>>> 2
#print bell(3)
#>>> 5
#print bell(4)
#>>> 15
#print bell(5)
#>>> 52
#print bell(15)
#>>> 1382958545