forked from pytorch/torchtitan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
435 lines (369 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
from datetime import timedelta
import torch
from torch.distributed.elastic.multiprocessing.errors import record
from torchtitan import utils
from torchtitan.checkpoint import CheckpointManager, TrainState
from torchtitan.config_manager import JobConfig
from torchtitan.datasets import build_hf_data_loader, build_tokenizer
from torchtitan.float8 import Float8Handler
from torchtitan.logging import init_logger, logger
from torchtitan.metrics import build_gpu_memory_monitor, build_metric_logger
from torchtitan.models import model_name_to_cls, model_name_to_tokenizer, models_config
from torchtitan.optimizer import build_lr_schedulers, build_optimizers
from torchtitan.parallelisms import (
models_parallelize_fns,
models_pipelining_fns,
ParallelDims,
)
from torchtitan.profiling import maybe_enable_memory_snapshot, maybe_enable_profiling
# Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
@record
def main(job_config: JobConfig):
init_logger()
logger.info(f"Starting job: {job_config.job.description}")
# used for colorful printing
color = utils.Color if job_config.metrics.enable_color_printing else utils.NoColor
# take control of garbage collection to avoid stragglers
gc_handler = utils.GarbageCollection(gc_freq=job_config.training.gc_freq)
# set determinisism, use seed == None to skip deterministic training
utils.set_determinism(job_config.training.seed)
if job_config.training.seed is None:
logger.info("Deterministic training off")
else:
logger.info(
f"Deterministic training on. Using seed: {job_config.training.seed}"
)
# init distributed
world_size = int(os.environ["WORLD_SIZE"])
parallel_dims = ParallelDims(
dp_shard=job_config.training.data_parallel_shard_degree,
dp_replicate=job_config.training.data_parallel_replicate_degree,
cp=job_config.experimental.context_parallel_degree,
tp=job_config.training.tensor_parallel_degree,
pp=job_config.experimental.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=job_config.training.enable_loss_parallel,
)
device = torch.device(f"cuda:{int(os.environ['LOCAL_RANK'])}")
torch.cuda.set_device(device)
utils.init_distributed(job_config)
# initialize GPU memory monitor and get peak flops for MFU calculation
gpu_memory_monitor = build_gpu_memory_monitor()
gpu_peak_flops = utils.get_peak_flops(gpu_memory_monitor.device_name)
logger.info(f"Peak FLOPS used for computing MFU: {gpu_peak_flops:.3e}")
# build meshes
world_mesh = parallel_dims.build_mesh(device_type="cuda")
if parallel_dims.dp_enabled:
dp_mesh = world_mesh["dp"]
dp_degree, dp_rank = dp_mesh.size(), dp_mesh.get_local_rank()
else:
dp_degree, dp_rank = 1, 0
if parallel_dims.pp_enabled:
pp_mesh = world_mesh["pp"]
model_name = job_config.model.name
# build tokenizer
tokenizer_type = model_name_to_tokenizer[model_name]
tokenizer = build_tokenizer(tokenizer_type, job_config.model.tokenizer_path)
# build dataloader
data_loader = build_hf_data_loader(
job_config.training.dataset,
job_config.training.dataset_path,
tokenizer,
job_config.training.batch_size,
job_config.training.seq_len,
dp_degree,
dp_rank,
)
# build model (using meta init)
model_cls = model_name_to_cls[model_name]
model_config = models_config[model_name][job_config.model.flavor]
# set the model configs from training inputs:
# 1. norm type to decide which norm layer to use
# 2. vocab size from tokenizer
# 3. max_seq_len base on inputs
model_config.norm_type = job_config.model.norm_type
model_config.vocab_size = tokenizer.n_words
model_config.max_seq_len = job_config.training.seq_len
logger.info(f"Building {model_name} {job_config.model.flavor} with {model_config}")
with torch.device("meta"):
model = model_cls.from_model_args(model_config)
# a no-op hander if float8 is not enabled
float8_handler = Float8Handler(job_config, parallel_dims)
# swap to Float8Linear based on float8 configs
float8_handler.convert_to_float8_training(model)
# log model size
model_param_count = utils.get_num_params(model)
num_flop_per_token = utils.get_num_flop_per_token(
utils.get_num_params(model, exclude_embedding=True),
model_config,
job_config.training.seq_len,
)
logger.info(
f"{color.blue}Model {model_name} {job_config.model.flavor} "
f"{color.red}size: {model_param_count:,} total parameters{color.reset}"
)
# loss function to be shared by Pipeline Parallel and SPMD training
def loss_fn(pred, labels):
return torch.nn.functional.cross_entropy(
pred.flatten(0, 1).float(), labels.flatten(0, 1)
)
if job_config.training.compile:
loss_fn = torch.compile(loss_fn)
# move sharded model to CPU/GPU and initialize weights via DTensor
if job_config.checkpoint.create_seed_checkpoint:
init_device = "cpu"
buffer_device = None
elif job_config.training.enable_cpu_offload:
init_device = "cpu"
buffer_device = "cuda"
else:
init_device = "cuda"
buffer_device = None
# apply parallelisms and initialization
if parallel_dims.pp_enabled:
# apply PT-D Pipeline Parallel
pp_schedule, model_parts = models_pipelining_fns[model_name](
model, pp_mesh, parallel_dims, job_config, device, model_config, loss_fn
)
# For PP with looped schedules, each item in model_parts is one stage-model-chunk.
# We need to iterate through model_parts to apply SPMD parallelisms, compilation,
# optimizer, and checkpointing
for m in model_parts:
# apply SPMD-style PT-D techniques
models_parallelize_fns[model_name](m, world_mesh, parallel_dims, job_config)
m.to_empty(device=init_device)
m.init_weights(buffer_device=buffer_device)
m.train()
else:
# apply PT-D Tensor Parallel, activation checkpointing, torch.compile, Data Parallel
models_parallelize_fns[model_name](model, world_mesh, parallel_dims, job_config)
model.to_empty(device=init_device)
model.init_weights(buffer_device=buffer_device)
model.train()
model_parts = [model]
gpu_mem_stats = gpu_memory_monitor.get_peak_stats()
logger.info(
f"GPU memory usage for model: "
f"{gpu_mem_stats.max_reserved_gib:.2f}GiB"
f"({gpu_mem_stats.max_reserved_pct:.2f}%)"
)
# build optimizer after applying parallelisms to the model
optimizers = build_optimizers(model_parts, job_config)
lr_schedulers = build_lr_schedulers(optimizers.optimizers, job_config)
train_state = TrainState()
# load initial checkpoint
checkpoint = CheckpointManager(
dataloader=data_loader,
model_parts=model_parts,
optimizers=optimizers.optimizers,
lr_schedulers=lr_schedulers.schedulers,
states={"train_state": train_state},
job_config=job_config,
)
if job_config.checkpoint.create_seed_checkpoint:
assert (
world_size == 1
), "Must create seed-checkpoint using one gpu, to disable sharding"
checkpoint.save(curr_step=0, force=True)
logger.info("Created seed checkpoint")
return
checkpoint_loaded = checkpoint.load()
if parallel_dims.pp_enabled and not checkpoint_loaded:
# TODO: fix this by allowing each rank to set their own seed
logger.warning(
"Pipeline Parallelism is being used without a seed checkpoint. "
"All the substages will be initialized with random weights with same RNG state which can affect convergence."
)
metric_logger = build_metric_logger(job_config, parallel_dims)
# plot losses loaded from checkpoint (if any) to TensorBoard
# NOTE: Loss info after the last log step before checkpoint saving will not be ploted.
# This can be avoided by setting checkpoint.interval to be a multiple of metrics.log_freq
if train_state.step > 0:
for idx, step in enumerate(train_state.log_steps):
metrics = {
"loss_metrics/global_avg_loss": train_state.global_avg_losses[idx],
"loss_metrics/global_max_loss": train_state.global_max_losses[idx],
}
metric_logger.log(metrics, step=step)
data_iterator = iter(data_loader)
train_context = utils.get_train_context(
parallel_dims.loss_parallel_enabled,
job_config.experimental.enable_compiled_autograd,
)
# variables used to keep info for metrics logging
losses_since_last_log = []
ntokens_since_last_log = 0
data_loading_times = []
time_last_log = time.perf_counter()
gpu_memory_monitor.reset_peak_stats()
checkpoint.reset()
# train loop
logger.info(
f"Training starts at step {train_state.step + 1}, "
f"with local batch size {job_config.training.batch_size}, "
f"global batch size {job_config.training.batch_size * dp_degree}, "
f"sequence length {job_config.training.seq_len}, "
f"total steps {job_config.training.steps} "
f"(warmup {job_config.training.warmup_steps})"
)
with maybe_enable_profiling(
job_config, global_step=train_state.step
) as torch_profiler, maybe_enable_memory_snapshot(
job_config, global_step=train_state.step
) as memory_profiler:
while train_state.step < job_config.training.steps:
train_state.step += 1
gc_handler.run(train_state.step)
# get batch
data_load_start = time.perf_counter()
batch = next(data_iterator)
input_ids, labels = batch
ntokens_since_last_log += labels.numel()
data_loading_times.append(time.perf_counter() - data_load_start)
input_ids = input_ids.cuda()
labels = labels.cuda()
optimizers.zero_grad()
# apply context parallelism if cp is enabled
optional_context_parallel_ctx = (
utils.create_context_parallel_ctx(
cp_mesh=world_mesh["cp"],
cp_buffers=[input_ids, labels, model.freqs_cis],
cp_seq_dims=[1, 1, 0],
cp_no_restore_buffers={input_ids, labels},
)
if parallel_dims.cp_enabled
else None
)
if parallel_dims.pp_enabled:
# Pipeline Parallel forward / backward inside step() call
is_last_stage = pp_mesh.get_local_rank() == pp_mesh.size() - 1
with train_context(optional_context_parallel_ctx):
if pp_mesh.get_local_rank() == 0:
pp_schedule.step(input_ids)
elif is_last_stage:
losses = []
pp_schedule.step(target=labels, losses=losses)
else:
pp_schedule.step()
# accumulate losses across pipeline microbatches
loss = (
torch.mean(torch.stack(losses))
if is_last_stage
else torch.Tensor([-1.0])
)
else:
# Non-PP forward / backward
with train_context(optional_context_parallel_ctx):
pred = model(input_ids)
loss = loss_fn(pred, labels)
# pred.shape=(bs, seq_len, vocab_size)
# need to free to before bwd to avoid peaking memory
del pred
loss.backward()
# clip gradients
for m in model_parts:
torch.nn.utils.clip_grad_norm_(
m.parameters(), job_config.training.max_norm, foreach=True
)
# sync float8 amaxes and scales
float8_handler.sync_float8_amax_and_scale_history(model_parts)
# optimizer step
checkpoint.maybe_wait_for_staging()
optimizers.step()
lr_schedulers.step()
# calculate float8 dynamic amax/scale for all-parameter for FSDP2
# it issues a single all-reduce for all parameters at once for better performance
float8_handler.precompute_float8_dynamic_scale_for_fsdp(model_parts)
losses_since_last_log.append(loss)
# log metrics
if (
train_state.step == 1
or train_state.step % job_config.metrics.log_freq == 0
):
losses = [loss.item() for loss in losses_since_last_log]
avg_loss, max_loss = sum(losses) / len(losses), max(losses)
if parallel_dims.dp_enabled:
global_avg_loss, global_max_loss = (
utils.dist_mean(avg_loss, dp_mesh),
utils.dist_max(max_loss, dp_mesh),
)
else:
global_avg_loss, global_max_loss = avg_loss, max_loss
# update train state
train_state.log_steps.append(train_state.step)
train_state.global_avg_losses.append(global_avg_loss)
train_state.global_max_losses.append(global_max_loss)
time_delta = time.perf_counter() - time_last_log
# tokens per second, abbr. as wps by convention
wps = ntokens_since_last_log / (
time_delta * parallel_dims.non_data_parallel_size
)
# model FLOPS utilization
# For its definition and calculation, please refer to the PaLM paper:
# https://arxiv.org/abs/2204.02311
mfu = 100 * num_flop_per_token * wps / gpu_peak_flops
time_end_to_end = time_delta / job_config.metrics.log_freq
time_data_loading = sum(data_loading_times) / len(data_loading_times)
time_data_loading_pct = 100 * sum(data_loading_times) / time_delta
gpu_mem_stats = gpu_memory_monitor.get_peak_stats()
metrics = {
"loss_metrics/global_avg_loss": global_avg_loss,
"loss_metrics/global_max_loss": global_max_loss,
"wps": wps,
"mfu(%)": mfu,
"time_metrics/end_to_end(s)": time_end_to_end,
"time_metrics/data_loading(s)": time_data_loading,
"time_metrics/data_loading(%)": time_data_loading_pct,
"memory/max_active(GiB)": gpu_mem_stats.max_active_gib,
"memory/max_active(%)": gpu_mem_stats.max_active_pct,
"memory/max_reserved(GiB)": gpu_mem_stats.max_reserved_gib,
"memory/max_reserved(%)": gpu_mem_stats.max_reserved_pct,
"memory/num_alloc_retries": gpu_mem_stats.num_alloc_retries,
"memory/num_ooms": gpu_mem_stats.num_ooms,
}
metric_logger.log(metrics, step=train_state.step)
logger.info(
f"{color.cyan}step: {train_state.step:2} "
f"{color.green}loss: {global_avg_loss:7.4f} "
f"{color.yellow}memory: {gpu_mem_stats.max_reserved_gib:5.2f}GiB"
f"({gpu_mem_stats.max_reserved_pct:.2f}%) "
f"{color.blue}wps: {round(wps):,} "
f"{color.magenta}mfu: {mfu:.2f}%{color.reset}"
)
losses_since_last_log.clear()
ntokens_since_last_log = 0
data_loading_times.clear()
time_last_log = time.perf_counter()
gpu_memory_monitor.reset_peak_stats()
checkpoint.save(
train_state.step, force=(train_state.step == job_config.training.steps)
)
# signal the profiler that the next profiling step has started
if torch_profiler:
torch_profiler.step()
if memory_profiler:
memory_profiler.step()
# reduce timeout after first train step for faster signal
# (assuming lazy init and compilation are finished)
if train_state.step == 1:
utils.set_pg_timeouts(
timeout=timedelta(seconds=job_config.comm.train_timeout_seconds),
world_mesh=world_mesh,
)
if torch.distributed.get_rank() == 0:
logger.info("Sleeping 2 seconds for other ranks to complete")
time.sleep(2)
metric_logger.close()
logger.info("Training completed")
if __name__ == "__main__":
config = JobConfig()
config.parse_args()
main(config)
torch.distributed.destroy_process_group()