-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathUtility.py
87 lines (63 loc) · 3.25 KB
/
Utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
__author__ = 'GongLi'
from sklearn.cluster import MiniBatchKMeans
import numpy as np
from scipy.cluster.vq import *
class Vocabulary:
# build vocabulary based on a stack of features
def __init__(self, stackOfDescriptors, k, subSampling = 10):
kmeans = MiniBatchKMeans(init='k-means++', n_clusters=k, n_init=10)
kmeans.fit(stackOfDescriptors)
self.vocabulary = kmeans.cluster_centers_
self.size = self.vocabulary.shape[0]
# convert imageDescriptors into one histogram
def buildHistogram(self, imageDescriptors):
histogram = np.zeros(self.size)
stackFeatures = imageDescriptors[0].descriptor
for descriptor in imageDescriptors[1:]:
descriptor = descriptor.descriptor
stackFeatures = np.vstack((stackFeatures, descriptor))
codes, distance = vq(stackFeatures, self.vocabulary)
for code in codes:
histogram[code] += 1
return histogram
# build spatial pyramids of an image based on the attribute of level
def buildHistogramForEachImageAtDifferentLevels(self, descriptorsOfImage, level):
width = descriptorsOfImage.width
height = descriptorsOfImage.height
widthStep = int(width / 4)
heightStep = int(height / 4)
descriptors = descriptorsOfImage.descriptors
# level 2, a list with size = 16 to store histograms at different location
histogramOfLevelTwo = np.zeros((16, self.size))
for descriptor in descriptors:
x = descriptor.x
y = descriptor.y
boundaryIndex = int(x / widthStep) + int(y / heightStep) *4
feature = descriptor.descriptor
shape = feature.shape[0]
feature = feature.reshape(1, shape)
codes, distance = vq(feature, self.vocabulary)
histogramOfLevelTwo[boundaryIndex][codes[0]] += 1
# level 1, based on histograms generated on level two
histogramOfLevelOne = np.zeros((4, self.size))
histogramOfLevelOne[0] = histogramOfLevelTwo[0] + histogramOfLevelTwo[1] + histogramOfLevelTwo[4] + histogramOfLevelTwo[5]
histogramOfLevelOne[1] = histogramOfLevelTwo[2] + histogramOfLevelTwo[3] + histogramOfLevelTwo[6] + histogramOfLevelTwo[7]
histogramOfLevelOne[2] = histogramOfLevelTwo[8] + histogramOfLevelTwo[9] + histogramOfLevelTwo[12] + histogramOfLevelTwo[13]
histogramOfLevelOne[3] = histogramOfLevelTwo[10] + histogramOfLevelTwo[11] + histogramOfLevelTwo[14] + histogramOfLevelTwo[15]
# level 0
histogramOfLevelZero = histogramOfLevelOne[0] + histogramOfLevelOne[1] + histogramOfLevelOne[2] + histogramOfLevelOne[3]
if level == 0:
return histogramOfLevelZero
elif level == 1:
tempZero = histogramOfLevelZero.flatten() * 0.5
tempOne = histogramOfLevelOne.flatten() * 0.5
result = np.concatenate((tempZero, tempOne))
return result
elif level == 2:
tempZero = histogramOfLevelZero.flatten() * 0.25
tempOne = histogramOfLevelOne.flatten() * 0.25
tempTwo = histogramOfLevelTwo.flatten() * 0.5
result = np.concatenate((tempZero, tempOne, tempTwo))
return result
else:
return None