-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscore.py
121 lines (104 loc) · 4.48 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (C) 2020 Unbabel
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Command for scoring MT systems.
===============================
optional arguments:
-h, --help Show this help message and exit.
-s SOURCES, --sources SOURCES
(required, type: Path_fr)
-t TRANSLATIONS, --translations TRANSLATIONS
(required, type: Path_fr)
-r REFERENCES, --references REFERENCES
(required, type: Path_fr)
--to_json TO_JSON (type: Union[bool, str], default: False)
--model MODEL (type: Union[str, Path_fr], default: wmt21-large-estimator)
--batch_size BATCH_SIZE
(type: int, default: 32)
--gpus GPUS (type: int, default: 1)
"""
import json
from typing import Union
from comet.download_utils import download_model
from comet.models import available_metrics, load_from_checkpoint
from jsonargparse import ArgumentParser
from jsonargparse.typing import Path_fr
from pytorch_lightning import seed_everything
parser = ArgumentParser(description="Command for scoring MT systems.")
parser.add_argument("-s", "--sources", type=Path_fr, required=True)
parser.add_argument("-t", "--translations", type=Path_fr, required=True)
parser.add_argument("-r", "--references", type=Path_fr)
parser.add_argument("--to_json", type=Union[bool, str], default=False)
parser.add_argument(
"--model",
type=Union[str, Path_fr],
required=False,
default="wmt20-comet-da"
)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--gpus", type=int, default=1)
parser.add_argument("--mc_dropout", type=Union[bool, int], default=False)
parser.add_argument(
"--seed_everything",
help="Prediction seed.",
type=int,
default=12,
)
parser.add_argument("--hparams_file_path", type=str, default=None)
cfg = parser.parse_args()
def main() -> None:
seed_everything(cfg.seed_everything)
if (cfg.references is None) and ("refless" not in cfg.model):
parser.error("{} requires -r/--references.".format(cfg.model))
model_path = (
download_model(cfg.model) if cfg.model in available_metrics else cfg.model
)
model = load_from_checkpoint(model_path, cfg.hparams_file_path)
model.eval()
with open(cfg.sources()) as fp:
sources = [line.strip() for line in fp.readlines()]
with open(cfg.translations()) as fp:
translations = [line.strip() for line in fp.readlines()]
if "refless" in cfg.model:
data = {"src": sources, "mt": translations}
else:
with open(cfg.references()) as fp:
references = [line.strip() for line in fp.readlines()]
data = {"src": sources, "mt": translations, "ref": references}
data = [dict(zip(data, t)) for t in zip(*data.values())]
if cfg.mc_dropout:
mean_scores, std_scores, sys_score = model.predict(
data, cfg.batch_size, cfg.gpus, cfg.mc_dropout
)
for i, (mean, std, sample) in enumerate(zip(mean_scores, std_scores, data)):
print("Segment {}\tscore: {:.4f}\tvariance: {:.4f}".format(i, mean, std))
sample["UniTE"] = mean
sample["variance"] = std
print("System score: {:.4f}".format(sys_score))
if isinstance(cfg.to_json, str):
with open(cfg.to_json, "w") as outfile:
json.dump(data, outfile, ensure_ascii=False, indent=4)
print("Predictions saved in: {}.".format(cfg.to_json))
else:
predictions, sys_score = model.predict(data, cfg.batch_size, cfg.gpus)
for i, (score, sample) in enumerate(zip(predictions, data)):
print("Segment {}\tscore: {:.4f}".format(i, score))
sample["UniTE"] = score
print("System score: {:.4f}".format(sys_score))
if isinstance(cfg.to_json, str):
with open(cfg.to_json, "w") as outfile:
json.dump(data, outfile, ensure_ascii=False, indent=4)
print("Predictions saved in: {}.".format(cfg.to_json))
if __name__ == '__main__':
main()