-
Looking at CTR Prediction Again: Is Attention All You Need?
Author(Institute): Yuan Cheng(BOSSZhipin)
KeyWords: click-through rate prediction; neural networks; self-attention mechanism; factorization machines; discrete choice model
Dataset: Criteo; Avazu -
Mix Cache-based Distributed Training System for CTR Models with Huge Embedding Table
Author(Institute): Huifeng Guo(Huawei)
KeyWords: CTR Prediction; Recommendation; Distributed Training System
Dataset: Criteo-TB -
A General Method For Automatic Discovery of Powerful Interactions In Click-Through Rate Prediction
Author(Institute): Yumeng Li(Alibaba三作)
KeyWords: Click-through Rate Prediction; Gradient-based Neural Architecture Search; Feature Interaction; Interaction Ensemble
Dataset: Criteo; Avazu; Movielens; Frappe -
Learning Graph Meta Embeddings for Cold-Start Ads in Click-Through Rate Prediction
Author(Institute): Yumeng Li(Alibaba)
KeyWords: Online advertising; CTR prediction; Cold start; Deep learning
Dataset: ML-1M; Taobao; News feed -
GemNN: Gating-enhanced Multi-task Neural Networks with Feature Interaction Learning for CTR Prediction
Author(Institute): Hongliang Fei(Baidu)
KeyWords: CTR -
Deep User Match Network for Click-Through Rate Prediction
Author(Institute): Zai Huang(Alibaba)
KeyWords: CTR -
RLNF: Reinforcement Learning based Noise Filtering for Click-Through Rate Prediction
Author(Institute): Pu Zhao(Microsoft)
KeyWords: CTR
Dataset: Avazu -
Category-aware Collaborative Sequential Recommendation
Author(Institute): Chong Wang(Bytedance四作)
KeyWords: Sequential recommendation -
Learning to Ask Appropriate Questions in Conversational Recommendation
Author(Institute): Hao Wang(Alibaba四作)
KeyWords: Conversational recommender systems; knowledge graph; clarifying question; preference mining
Dataset: MovieLens-1M; DBbook2014 -
Personalized News Recommendation with Knowledge-aware Interactive Matching
Author(Institute): Fangzhao Wu(Microsoft二作)
KeyWords: News Recommendation; Interactive Matching; Single-Tower
Dataset: MIND; Feeds -
Empowering News Recommendation with Pre-trained Language Models
Author(Institute): Fangzhao Wu(Microsoft二作)
KeyWords: News Recommendation; pre-trained language model
Dataset: MIND; Multilingual -
Graph Meta Network for Multi-Behavior Recommendation
Author(Institute): Chao Huang(JD三作)
KeyWords: Multi-Behavior Recommendation
Dataset: Taobao-Data; Beibei-Data; IJCAI-Contest -
AutoDebias: Learning to Debias for Recommendation
Author(Institute): Guli Lin(Alibaba四作)
KeyWords: Recommendation; Bias; Debias; Meta-learning
Dataset: Yahoo!R3; Coat; Simulation -
Causal Intervention for Leveraging Popularity Bias in Recommendation
Author(Institute): Chonggang Song(Tencent三作)
KeyWords: Popularity Bias; Causal Intervention
Dataset: Kwai; Douban Movie; Tencent -
Counterfactual Reward Modification for Streaming Recommendation with Delayed Feedback
Author(Institute): Hanjing Su(Tencent三作)
KeyWords: Streaming Recommendation
Dataset: WeChat -
Package Recommendation with Intra- and Inter-Package Attention Networks
Author(Institute): Chen Li(WeChat)
KeyWords: Package Recommendation; Attention -
Lighter and Better: Low-Rank Decomposed Self-Attention Networks for Next-Item Recommendation
Author(Institute): Zheng Liu(Microsoft三作)
KeyWords: Low-Rank Self-Attention; Next-Item Recommendation
Dataset: Yelp; Books; ML-1M -
Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning
Author(Institute): Yaliang Li(Alibaba二作)
KeyWords: Conversational Recommendation; Reinforcement Learning; Graph Representation Learning
Dataset: LastFM; Yelp; Taobao -
Joint Knowledge Pruning and Recurrent Graph Convolution for News Recommendation
Author(Institute): Fangzhao Wu(Microsoft四作)
KeyWords: Recurrent Graph Convolution; Knowledge Pruning; News Recommendation
Dataset: MIND; Adressa -
AMM: Attentive Multi-field Matching for News Recommendation
Author(Institute): Qi Zhang(Huawei)
KeyWords: News Recommendation -
RMBERT: News Recommendation via Recurrent Reasoning Memory Network over BERT
Author(Institute): Qinglin Jia(Huawei)
KeyWords: news recommendation; BERT -
FedCT: Federated Collaborative Transfer for Recommendation
Author(Institute): Wenhui Yu(Alibaba三作)
KeyWords: Federated Collaborative Transfer -
Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start Users
Author(Institute): Yongchun Zhu(WeChat三作)
KeyWords: Cross-domain Recommendation; Meta Learning; Cold-start Dataset: Amazon; Douban -
Structured Graph Convolutional Networks with Stochastic Masks for Recommender Systems
Author(Institute): Huiyuan Chen(Visa)
KeyWords: Structured Graph Convolutional Networks -
Self-supervised Graph Learning for Recommendation
Author(Institute): Jianxun Lian(Microsoft四作)
KeyWords: Collaborative filtering; Graph Neural Network; Self-supervised Learning; Long-tail Recommendation
Dataset: Yelp2018; Amazon-Book; Alibaba-iFashion -
Learning Recommender Systems with Implicit Feedback via Soft Target Enhancement
Author(Institute): Fajie Yuan(Tencent二作)
KeyWords: Soft Target Enhancement -
PreSizE: Predicting Size in E-Commerce using Transformers
Author(Institute): Yotam Eshel(eBay)
KeyWords: Size Prediction; Transformers; Deep-Learning
Dataset: eBay -
Did you buy it already? Detecting Users Purchase-State From Their Product-Related Questions
Author(Institute): Lital Kuchy(Amazon)
KeyWords: Purchase state classification; Product question answering
Dataset: Amazon -
Path-based Deep Network for Candidate Item Matching in Recommenders
Author(Institute): Houyi Li(Alibaba)
KeyWords: Deep Learning; Recommendation Systems
Dataset: MovieLens; Pinterest; Amazon Books -
How Powerful are Interest Diffusion on Purchasing Prediction: A Case Study of Taocode Author(Institute): Shen Fa(Alibaba二作)
KeyWords: purchasing prediction; information diffusion; GNN; Taocode
Dataset: Taocode -
Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate Estimation
Author(Institute): Lixin Zou(Baidu二作)
KeyWords: Selection Bias; Missing-Not-At-Random Data; Doubly Robust; Postclick Conversion Rate Estimation
Dataset: MovieLens -
On Interpretation and Measurement of Soft Attributes for Recommendation
Author(Institute): Filip Radlinski(Google二作)
KeyWords: Soft attributes; Recommendation critiquing; Preference feedback
Dataset: MovieLens -
Learning to Warm Up Cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shifting Networks
Author(Institute): Ruobing Xie(WeChat三作)
KeyWords: Cold-start Recommendation; Item ID Embedding; Warm Up; Meta Network
Dataset: MovieLens-1M; Taobao Display Ad Click; CIKM2019 EComm AI -
Fairness among New Items in Cold Start Recommender Systems
Author(Institute): Jingu Kim(Netflix二作)
KeyWords: fairness; cold start recommendation
Dataset: ML1M; ML20M; CiteULike; XING -
Long-Tail Hashing
Author(Institute): Yuqing Hou(Meituan三作)
KeyWords: learning to hash; long-tail datasets; memory network; large-scale multimedia retrieval
Dataset: Cifar100; ImageNet100 -
Neural Representations in Hybrid Recommender Systems: Prediction versus Regularization
Author(Institute): Ramin Raziperchikolaei(Rakuten)
KeyWords: hybrid recommender systems; neural networks; regularization
Dataset: ml100k; ml1m; Ichiba -
Cross-Batch Negative Sampling for Training Two-Tower Recommenders
Author(Institute): Jieming Zhu(Huawei二作)
KeyWords: Recommender systems; information retrieval; neural networks
Dataset: Amazon -
Explicit Semantic Cross Feature Learning via Pre-trained Graph Neural Networks for CTR Prediction
Author(Institute): Feng Li(Alibaba)
KeyWords: CTR prediction; Pre-trained GNNs; Cross Features; Explicit Fashion
Dataset: MovieLens -
Underestimation Refinement: A General Enhancement Strategy for Exploration in Recommendation Systems
Author(Institute): Yuhai Song(JD)
KeyWords: Contextual Bandit
Dataset: Yahoo -
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking
Author(Institute): Fajie Yuan(Tencent三作)
KeyWords: Knowledge Transfer; Training acceleration
Dataset: ML20; Kuaibao; ColdRec -
FORM: Follow the Online Regularized Meta-Leader for Cold-Start Recommendation
Author(Institute): Yanrong Kang(Tencent四作)
KeyWords: Meta-learning