forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dygraph_model.py
110 lines (93 loc) · 4.56 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import net
class DygraphModel():
# define model
def create_model(self, config):
feature_size = config.get('hyper_parameters.feature_size', None)
expert_num = config.get('hyper_parameters.expert_num', None)
expert_size = config.get('hyper_parameters.expert_size', None)
tower_size = config.get('hyper_parameters.tower_size', None)
gate_num = config.get('hyper_parameters.gate_num', None)
MMoE = net.MMoELayer(feature_size, expert_num, expert_size, tower_size,
gate_num)
return MMoE
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data, config):
feature_size = config.get('hyper_parameters.feature_size', None)
input_data = paddle.to_tensor(batch_data[0].numpy().astype('float32')
.reshape(-1, feature_size))
label_income = paddle.to_tensor(batch_data[1].numpy().astype('float32')
.reshape(-1, 1))
label_marital = paddle.to_tensor(batch_data[2].numpy().astype(
'float32').reshape(-1, 1))
return input_data, label_income, label_marital
# define loss function by predicts and label
def create_loss(self, pred_income, pred_marital, label_income,
label_marital):
pred_income_1d = paddle.slice(
pred_income, axes=[1], starts=[1], ends=[2])
pred_marital_1d = paddle.slice(
pred_marital, axes=[1], starts=[1], ends=[2])
cost_income = paddle.nn.functional.log_loss(
input=pred_income_1d, label=label_income)
cost_marital = paddle.nn.functional.log_loss(
input=pred_marital_1d, label=label_marital)
avg_cost_income = paddle.mean(x=cost_income)
avg_cost_marital = paddle.mean(x=cost_marital)
cost = avg_cost_income + avg_cost_marital
return cost
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
optimizer = paddle.optimizer.Adam(
learning_rate=lr, parameters=dy_model.parameters())
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = ["auc_income", "auc_marital"]
auc_income_metric = paddle.metric.Auc("ROC")
auc_marital_metric = paddle.metric.Auc("ROC")
metrics_list = [auc_income_metric, auc_marital_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
input_data, label_income, label_marital = self.create_feeds(batch_data,
config)
pred_income, pred_marital = dy_model.forward(input_data)
loss = self.create_loss(pred_income, pred_marital, label_income,
label_marital)
# update metrics
metrics_list[0].update(
preds=pred_income.numpy(), labels=label_income.numpy())
metrics_list[1].update(
preds=pred_marital.numpy(), labels=label_marital.numpy())
print_dict = {'loss': loss}
# print_dict = None
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
input_data, label_income, label_marital = self.create_feeds(batch_data,
config)
pred_income, pred_marital = dy_model.forward(input_data)
# update metrics
metrics_list[0].update(
preds=pred_income.numpy(), labels=label_income.numpy())
metrics_list[1].update(
preds=pred_marital.numpy(), labels=label_marital.numpy())
return metrics_list, None