forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config_bigdata.yaml
57 lines (52 loc) · 1.89 KB
/
config_bigdata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
runner:
train_data_dir: "../../../datasets/ali-ccp/train_data"
train_reader_path: "escm_reader" # importlib format
use_gpu: True
use_auc: True
auc_num: 2
train_batch_size: 1024
epochs: 10
print_interval: 10
#model_init_path: "output_model/0" # init model
model_save_path: "output_model_escm_all"
test_data_dir: "../../../datasets/ali-ccp/test_data"
infer_batch_size: 1024
infer_reader_path: "escm_reader" # importlib format
infer_load_path: "output_model_escm_all"
infer_start_epoch: 0
infer_end_epoch: 10
counterfact_mode: "DR"
#use inference save model
use_inference: False
save_inference_feed_varnames: ["field_0", "field_1", "field_2", "field_3", "field_4", "field_5", "field_6", "field_7", "field_8", "field_9", "field_10", "field_11", "field_12", "field_13", "field_14", "field_15", "field_16", "field_17", "field_18", "field_19", "field_20", "field_21", "field_22"]
save_inference_fetch_varnames: ["softmax_0.tmp_0", "concat_1.tmp_0"]
hyper_parameters:
sparse_feature_number: 737946
sparse_feature_dim: 12
num_field: 23
ctr_fc_sizes: [256, 64]
cvr_fc_sizes: [256, 64]
global_w: 0.5
counterfactual_w: 0.5
expert_num: 8
gate_num: 2
expert_size: 16
tower_size: 8
feature_size: 276
optimizer:
class: adam
learning_rate: 0.001
strategy: async