-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook_utils.py
executable file
·309 lines (263 loc) · 11.7 KB
/
notebook_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Python functions which run only within a Jupyter or Colab notebook."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from magenta.music import sequences_lib
import base64
import collections
from io import BytesIO
import os
# internal imports
import bokeh
import bokeh.plotting
from IPython import display
import numpy as np
import pandas as pd
from scipy.io import wavfile
from six.moves import urllib
from magenta.music import midi_synth
_DEFAULT_SAMPLE_RATE = 44100
_play_id = 0 # Used for ephemeral colab_play.
def merge_two_quantized_sequence_for_ploting(quantized_sequence1, quantized_sequence2):
'''changed the note_sequence'''
sequences_lib.assert_is_relative_quantized_sequence(quantized_sequence1)
sequences_lib.assert_is_relative_quantized_sequence(quantized_sequence2)
for note1 in quantized_sequence1.notes:
note1.instrument = 0
note1.program = 0
for note2 in quantized_sequence2.notes:
note2.instrument = 1
note2.program = 1
note = quantized_sequence1.notes.add()
note.start_time = note2.start_time
note.quantized_start_step = note2.quantized_start_step
note.pitch = note2.pitch
note.velocity = note2.velocity
note.instrument = note2.instrument
note.program = note2.program
note.end_time = note2.end_time
note.quantized_end_step = note2.quantized_end_step
return quantized_sequence1
def colab_play(array_of_floats, sample_rate, ephemeral=True, autoplay=False):
"""Creates an HTML5 audio widget to play a sound in Colab.
This function should only be called from a Colab notebook.
Args:
array_of_floats: A 1D or 2D array-like container of float sound
samples. Values outside of the range [-1, 1] will be clipped.
sample_rate: Sample rate in samples per second.
ephemeral: If set to True, the widget will be ephemeral, and disappear
on reload (and it won't be counted against realtime document size).
autoplay: If True, automatically start playing the sound when the
widget is rendered.
"""
from google.colab.output import _js_builder as js # pylint: disable=g-import-not-at-top,protected-access
normalizer = float(np.iinfo(np.int16).max)
array_of_ints = np.array(
np.asarray(array_of_floats) * normalizer, dtype=np.int16)
memfile = BytesIO()
wavfile.write(memfile, sample_rate, array_of_ints)
html = """<audio controls {autoplay}>
<source controls src="data:audio/wav;base64,{base64_wavfile}"
type="audio/wav" />
Your browser does not support the audio element.
</audio>"""
html = html.format(
autoplay='autoplay' if autoplay else '',
base64_wavfile=base64.encodestring(memfile.getvalue()))
memfile.close()
global _play_id
_play_id += 1
if ephemeral:
element = 'id_%s' % _play_id
display.display(display.HTML('<div id="%s"> </div>' % element))
js.Js('document', mode=js.EVAL).getElementById(element).innerHTML = html
else:
display.display(display.HTML(html))
def play_sequence(sequence,
synth=midi_synth.synthesize,
sample_rate=_DEFAULT_SAMPLE_RATE,
colab_ephemeral=True,
**synth_args):
"""Creates an interactive player for a synthesized note sequence.
This function should only be called from a Jupyter or Colab notebook.
Args:
sequence: A music_pb2.NoteSequence to synthesize and play.
synth: A synthesis function that takes a sequence and sample rate as input.
sample_rate: The sample rate at which to synthesize.
colab_ephemeral: If set to True, the widget will be ephemeral in Colab, and
disappear on reload (and it won't be counted against realtime document
size).
**synth_args: Additional keyword arguments to pass to the synth function.
"""
array_of_floats = synth(sequence, sample_rate=sample_rate, **synth_args)
try:
import google.colab # pylint: disable=unused-import,unused-variable,g-import-not-at-top
colab_play(array_of_floats, sample_rate, colab_ephemeral)
except ImportError:
display.display(display.Audio(array_of_floats, rate=sample_rate))
def plot_quantized_sequence(sequence,
show_figure=True):
"""Creates an interactive pianoroll for a tensorflow.magenta.NoteSequence.
Example usage: plot a random melody.
sequence = mm.Melody(np.random.randint(36, 72, 30)).to_sequence()
bokeh_pianoroll(sequence)
Args:
sequence: A tensorflow.magenta.NoteSequence.
show_figure: A boolean indicating whether or not to show the figure.
Returns:
If show_figure is False, a Bokeh figure; otherwise None.
"""
sequences_lib.assert_is_relative_quantized_sequence(sequence)
def _sequence_to_pandas_dataframe(sequence):
"""Generates a pandas dataframe from a sequence."""
pd_dict = collections.defaultdict(list)
for note in sequence.notes:
pd_dict['quantized_start_step'].append(note.quantized_start_step)
pd_dict['quantized_end_step'].append(note.quantized_end_step)
pd_dict['duration'].append(note.quantized_start_step - note.quantized_end_step)
pd_dict['pitch'].append(note.pitch)
pd_dict['bottom'].append(note.pitch - 0.4)
pd_dict['top'].append(note.pitch + 0.4)
pd_dict['velocity'].append(note.velocity)
pd_dict['fill_alpha'].append(note.velocity / 128.0)
pd_dict['instrument'].append(note.instrument)
pd_dict['program'].append(note.program)
# If no velocity differences are found, set alpha to 1.0.
if np.max(pd_dict['velocity']) == np.min(pd_dict['velocity']):
pd_dict['fill_alpha'] = [1.0] * len(pd_dict['fill_alpha'])
return pd.DataFrame(pd_dict)
# These are hard-coded reasonable values, but the user can override them
# by updating the figure if need be.
fig = bokeh.plotting.figure(
tools='hover,pan,box_zoom,reset,previewsave')
fig.plot_width = 500*4
fig.plot_height = 200*4
fig.xaxis.axis_label = 'steps'
fig.yaxis.axis_label = 'pitch (MIDI)'
fig.yaxis.ticker = bokeh.models.SingleIntervalTicker(interval=12)
fig.ygrid.ticker = bokeh.models.SingleIntervalTicker(interval=12)
# Pick indexes that are maximally different in Spectral8 colormap.
spectral_color_indexes = [7, 0, 6, 1, 5, 2, 3]
# Create a Pandas dataframe and group it by instrument.
dataframe = _sequence_to_pandas_dataframe(sequence)
instruments = sorted(set(dataframe['instrument']))
grouped_dataframe = dataframe.groupby('instrument')
for counter, instrument in enumerate(instruments):
instrument_df = grouped_dataframe.get_group(instrument)
color_idx = spectral_color_indexes[counter % len(spectral_color_indexes)]
color = bokeh.palettes.Spectral8[color_idx]
source = bokeh.plotting.ColumnDataSource(instrument_df)
fig.quad(top='top', bottom='bottom',
left='quantized_start_step', right='quantized_end_step',
line_color='black', fill_color=color,
fill_alpha='fill_alpha', source=source)
fig.select(dict(type=bokeh.models.HoverTool)).tooltips = (
{'pitch': '@pitch',
'program': '@program',
'velo': '@velocity',
'duration': '@duration',
'quantized_start_step': '@quantized_start_step',
'quantized_end_step': '@quantized_end_step',
'velocity': '@velocity',
'fill_alpha': '@fill_alpha'})
if show_figure:
bokeh.plotting.output_notebook()
bokeh.plotting.show(fig)
return None
return fig
def plot_sequence(sequence,
show_figure=True):
"""Creates an interactive pianoroll for a tensorflow.magenta.NoteSequence.
Example usage: plot a random melody.
sequence = mm.Melody(np.random.randint(36, 72, 30)).to_sequence()
bokeh_pianoroll(sequence)
Args:
sequence: A tensorflow.magenta.NoteSequence.
show_figure: A boolean indicating whether or not to show the figure.
Returns:
If show_figure is False, a Bokeh figure; otherwise None.
"""
def _sequence_to_pandas_dataframe(sequence):
"""Generates a pandas dataframe from a sequence."""
pd_dict = collections.defaultdict(list)
for note in sequence.notes:
pd_dict['start_time'].append(note.start_time)
pd_dict['end_time'].append(note.end_time)
pd_dict['duration'].append(note.end_time - note.start_time)
pd_dict['pitch'].append(note.pitch)
pd_dict['bottom'].append(note.pitch - 0.4)
pd_dict['top'].append(note.pitch + 0.4)
pd_dict['velocity'].append(note.velocity)
pd_dict['fill_alpha'].append(note.velocity / 128.0)
pd_dict['instrument'].append(note.instrument)
pd_dict['program'].append(note.program)
# If no velocity differences are found, set alpha to 1.0.
if np.max(pd_dict['velocity']) == np.min(pd_dict['velocity']):
pd_dict['fill_alpha'] = [1.0] * len(pd_dict['fill_alpha'])
return pd.DataFrame(pd_dict)
# These are hard-coded reasonable values, but the user can override them
# by updating the figure if need be.
fig = bokeh.plotting.figure(
tools='hover,pan,box_zoom,reset,previewsave')
fig.plot_width = 500*2
fig.plot_height = 200*2
fig.xaxis.axis_label = 'time (sec)'
fig.yaxis.axis_label = 'pitch (MIDI)'
fig.yaxis.ticker = bokeh.models.SingleIntervalTicker(interval=12)
fig.ygrid.ticker = bokeh.models.SingleIntervalTicker(interval=12)
# Pick indexes that are maximally different in Spectral8 colormap.
spectral_color_indexes = [7, 0, 6, 1, 5, 2, 3]
# Create a Pandas dataframe and group it by instrument.
dataframe = _sequence_to_pandas_dataframe(sequence)
instruments = sorted(set(dataframe['instrument']))
grouped_dataframe = dataframe.groupby('instrument')
for counter, instrument in enumerate(instruments):
instrument_df = grouped_dataframe.get_group(instrument)
color_idx = spectral_color_indexes[counter % len(spectral_color_indexes)]
color = bokeh.palettes.Spectral8[color_idx]
source = bokeh.plotting.ColumnDataSource(instrument_df)
fig.quad(top='top', bottom='bottom', left='start_time', right='end_time',
line_color='black', fill_color=color,
fill_alpha='fill_alpha', source=source)
fig.select(dict(type=bokeh.models.HoverTool)).tooltips = (
{'pitch': '@pitch',
'program': '@program',
'velo': '@velocity',
'duration': '@duration',
'start_time': '@start_time',
'end_time': '@end_time',
'velocity': '@velocity',
'fill_alpha': '@fill_alpha'})
if show_figure:
bokeh.plotting.output_notebook()
bokeh.plotting.show(fig)
return None
return fig
def download_bundle(bundle_name, target_dir, force_reload=False):
"""Downloads a Magenta bundle to target directory.
Args:
bundle_name: A string Magenta bundle name to download.
target_dir: A string local directory in which to write the bundle.
force_reload: A boolean that when True, reloads the bundle even if present.
"""
bundle_target = os.path.join(target_dir, bundle_name)
if not os.path.exists(bundle_target) or force_reload:
response = urllib.request.urlopen(
'http://download.magenta.tensorflow.org/models/%s' % bundle_name)
data = response.read()
local_file = open(bundle_target, 'wb')
local_file.write(data)
local_file.close()