-
Notifications
You must be signed in to change notification settings - Fork 2
/
ec2_launcher_lookahead.py
426 lines (354 loc) · 14.3 KB
/
ec2_launcher_lookahead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import sys
import boto3
import time
from pssh.clients import ParallelSSHClient
def return_args_trainers_dlrm(
private_ip_trainers, private_ip_oracle_cacher, log_file_name, num_iters, cache_size, lookahead
):
"""
Arguments for trainers
"""
run_args_trainers = [
{
"cmd": "rm -rf bagpipe && git clone [email protected]:iidsample/bagpipe.git && cd bagpipe && bash run_trainers_dlrm_lookahead.sh {} {} {} {} {} {} {} {} {}".format(
i + 2,
(len(private_ip_trainers) + 2),
private_ip_oracle_cacher,
i,
len(private_ip_trainers),
private_ip_trainers[0],
log_file_name,
cache_size,
lookahead
)
}
for i in range(len(private_ip_trainers))
]
return run_args_trainers
def return_args_emb_server_dlrm(private_ip_trainers, private_ip_oracle_cacher):
"""
Return arguments for embedding server
"""
run_args_emb_server = [
{
"cmd": "rm -rf bagpipe && git clone [email protected]:iidsample/bagpipe.git && cd bagpipe && bash run_embedding_server_dlrm.sh {} {} {}".format(
1, (len(private_ip_trainers) + 2), private_ip_oracle_cacher
)
}
]
return run_args_emb_server
def return_args_oracle_server_dlrm(
private_ip_trainers, private_ip_oracle_cacher, batch_size, cache_size, lookahead
):
"""
Return arguments for oracle server
"""
run_args_oracle_cacher = [
{
"cmd": "rm -rf bagpipe && git clone [email protected]:iidsample/bagpipe.git && cd bagpipe && bash run_oracle_server_dlrm_lookahead.sh {} {} {} {} {} {} {}".format(
0,
(len(private_ip_trainers) + 2),
private_ip_oracle_cacher,
len(private_ip_trainers),
batch_size,
cache_size,
lookahead
)
}
]
return run_args_oracle_cacher
def return_data_move_args_original(private_ip_trainers):
run_args_move_files = [
{
"cmd": "aws s3 cp s3://recommendation-data-bagpipe/kaggle_criteo_info ./ && aws s3 cp s3://recommendation-data-bagpipe/emb_table_info.txt ./ && aws s3 cp s3://recommendation-data-bagpipe/emb_table_info_h.txt ./"
}
for i in range(len(private_ip_trainers))
]
return run_args_move_files
run_args_oc_warmnup = [
{
"cmd": "aws s3 cp s3://recommendation-data-bagpipe/kaggle_criteo_info ./ && aws s3 cp s3://recommendation-data-bagpipe/kaggle_16 ./kaggle_16 --recursive && aws s3 cp s3://recommendation-data-bagpipe/emb_table_info.txt ./"
}
]
run_args_ebs_warmnup = [
{
"cmd": "aws s3 cp s3://recommendation-data-bagpipe/kaggle_criteo_info ./ && aws s3 cp s3://recommendation-data-bagpipe/emb_table_info.txt ./ && aws s3 cp s3://recommendation-data-bagpipe/emb_table_info_h.txt ./"
}
]
def launch_instances_on_demand(launch_cfg):
client = boto3.client("ec2", region_name=launch_cfg["region"])
ec2 = boto3.resource("ec2", region_name=launch_cfg["region"])
instance_lifecycle = launch_cfg["method"]
instance_count = launch_cfg["instance_count"]
if instance_lifecycle == "onDemand":
print("in")
response = client.run_instances(
MaxCount=launch_cfg["instance_count"],
MinCount=launch_cfg["instance_count"],
ImageId=launch_cfg["ami_id"],
InstanceType=launch_cfg["instance_type"],
KeyName=launch_cfg["key_name"],
EbsOptimized=True,
IamInstanceProfile={"Name": launch_cfg["iam_role"]},
# Placement={"AvailabilityZone": launch_cfg["az"]},
# Placement={"GroupName": launch_cfg["GroupName"]},
SecurityGroups=launch_cfg["security_group"],
)
else:
print("Not a valid launch method")
sys.exit()
instance_ids = list()
for request in response["Instances"]:
instance_ids.append(request["InstanceId"])
time.sleep(5)
loop = True
while loop:
loop = False
print("Instance ids {}".format(instance_ids))
response = client.describe_instance_status(
InstanceIds=instance_ids, IncludeAllInstances=True
)
# print("Response {}".format(response))
for status in response["InstanceStatuses"]:
print("Status {}".format(status["InstanceState"]["Name"]))
if status["InstanceState"]["Name"] != "running":
loop = True
time.sleep(5)
print("All instances are running ...")
instance_collection = ec2.instances.filter(
Filters=[{"Name": "instance-id", "Values": instance_ids}]
)
print("Instance collection {}".format(instance_collection))
private_ip = []
public_ip = []
for instance in instance_collection:
print(instance.private_ip_address)
private_ip.append(instance.private_ip_address)
print(instance.public_ip_address)
public_ip.append(instance.public_ip_address)
return (private_ip, public_ip, instance_ids)
def launch_instances_spot(launch_cfg):
client = boto3.client("ec2", region_name=launch_cfg["region"])
ec2 = boto3.resource("ec2", region_name=launch_cfg["region"])
instance_lifecycle = launch_cfg["method"]
instance_count = launch_cfg["instance_count"]
launch_dict = {
"KeyName": launch_cfg["key_name"],
"ImageId": launch_cfg["ami_id"],
"InstanceType": launch_cfg["instance_type"],
"Placement": {"AvailabilityZone": launch_cfg["az"]},
# "Placement": {"GroupName": launch_cfg["GroupName"]},
"SecurityGroups": ["pytorch-distributed"],
"IamInstanceProfile": {"Name": launch_cfg["iam_role"]},
}
if instance_lifecycle == "spot":
response = client.request_spot_instances(
InstanceCount=launch_cfg["instance_count"],
LaunchSpecification=launch_dict,
SpotPrice=launch_cfg["spot_price"],
)
print(response)
else:
print("Spot is not being used")
sys.exit()
request_ids = list()
for request in response["SpotInstanceRequests"]:
request_ids.append(request["SpotInstanceRequestId"])
fulfilled_instances = list()
loop = True
print("Waiting for requests to fulfill")
time.sleep(5)
while loop:
request = client.describe_spot_instance_requests(
SpotInstanceRequestIds=request_ids
)
for req in request["SpotInstanceRequests"]:
print(req)
if req["State"] in ["closed", "cancelled", "failed"]:
print("{}:{}".format(req["SpotInstanceRequestId"], req["State"]))
loop = False
break
if "InstanceId" in req and req["InstanceId"]:
fulfilled_instances.append(req["InstanceId"])
print(req["InstanceId"] + "running...")
if len(fulfilled_instances) == launch_cfg["instance_count"]:
print("All requested instances are fulfilled")
break
time.sleep(5)
if loop == False:
print("Unable to fulfill all requested instance ..")
sys.exit()
while loop:
loop = False
response = client.describe_instance_status(InstanceIds=fulfilled_instances)
for status in response["InstanceStatuses"]:
if status["InstanceType"]["Name"] != "running":
loop = True
print("All instances are running ..")
# getting host keys
instance_collection = ec2.instances.filter(
Filters=[{"Name": "instance-id", "Values": fulfilled_instances}]
)
private_ip = []
public_ip = []
for instance in instance_collection:
print(instance.private_ip_address)
private_ip.append(instance.private_ip_address)
print(instance.public_ip_address)
public_ip.append(instance.public_ip_address)
return (private_ip, public_ip, fulfilled_instances)
def terminate_instances(instance_id, launch_cfg):
print("Terminating instances ....")
client = boto3.client("ec2", region_name=launch_cfg["region"])
ec2 = boto3.resource("ec2", region_name=launch_cfg["region"])
instance_collection = ec2.instances.filter(
Filters=[{"Name": "instance-id", "Values": instance_id}]
)
for instance in instance_collection:
instance.terminate()
print("Bye Bye instances ...")
def get_az(instance_id, launch_cfg):
client = boto3.client("ec2", region_name=launch_cfg["region"])
ec2 = boto3.resource("ec2", region_name=launch_cfg["region"])
response = client.describe_instance_status(
InstanceIds=[instance_id], IncludeAllInstances=True
)
for status in response["InstanceStatuses"]:
az_val = status["AvailabilityZone"]
return az_val
def run_large_scale():
launch_cfg = {
"name": "recommendation-setup",
"key_name": "chengpo_oregon",
"key_path": "/Users/jesse/Documents/cs-shivaram/chengpo_oregon.pem",
"region": "us-west-2",
"method": "onDemand", # onDemand
"az": "us-west-2c",
"GroupName": "distributed-training",
# "ami_id": "ami-0f07487e2b2761b0a", # nv old
# "ami_id": "ami-04e4121bc8f056792", # oregon old
# "ami_id": "ami-00cfdc3a2d9df3424",
"ami_id": "ami-00893001ccd9f85b9",
"ssh_username": "ubuntu",
"iam_role": "ec2-s3-final",
"instance_type": "p3.2xlarge",
# "instance_type": "t2.medium",
"instance_count": 2,
"spot_price": "4.5",
"security_group": ["pytorch-distributed"],
}
# launching trainers
launch_cfg["instance_type"] = "p3.2xlarge"
launch_cfg["method"] = "onDemand"
launch_cfg["instance_count"] = 8
(
private_ip_trainers,
public_ip_trainers,
instance_ids_trainers,
) = launch_instances_on_demand(launch_cfg)
p3_az = get_az(instance_ids_trainers[0], launch_cfg)
# launching oracle cacher
launch_cfg["instance_type"] = "c5.18xlarge"
launch_cfg["spot_price"] = "2.5"
launch_cfg["method"] = "onDemand"
launch_cfg["instance_count"] = 1
# launch_cfg["ami_id"] = "ami-0a6479ed242da39cd"
private_ips, public_ips, instance_ids = launch_instances_on_demand(launch_cfg)
private_ip_oracle_cacher = private_ips[0]
public_ip_oracle_cacher = public_ips[0]
instance_id_oracle_cacher = instance_ids[0]
# launch emb server
launch_cfg["instance_type"] = "c5.18xlarge"
launch_cfg["spot_price"] = "2.5"
launch_cfg["method"] = "onDemand"
launch_cfg["instance_count"] = 1
# launch_cfg["ami_id"] = "ami-07526246b6e8e6e4c"
private_ips, public_ips, instance_ids = launch_instances_on_demand(launch_cfg)
private_ip_emb_server = private_ips[0]
public_ip_emb_server = public_ips[0]
instance_id_emb_server = instance_ids[0]
# client oracle cache
client_oracle_cacher = ParallelSSHClient(
[public_ip_oracle_cacher], user="ubuntu", pkey=launch_cfg["key_path"]
)
# trainer client
client_trainers = ParallelSSHClient(
public_ip_trainers, user="ubuntu", pkey=launch_cfg["key_path"]
)
# client for emb server
client_emb_server = ParallelSSHClient(
[public_ip_emb_server], user="ubuntu", pkey=launch_cfg["key_path"]
)
# trainer client warmup ebs
run_args_get_data = return_data_move_args_original(private_ip_trainers)
time.sleep(60)
output_trainers = client_trainers.run_command(
"%(cmd)s", host_args=run_args_get_data
)
output_line_count_oc = client_oracle_cacher.run_command(
"%(cmd)s", host_args=run_args_oc_warmnup
)
output_line_count_ebs = client_emb_server.run_command(
"%(cmd)s", host_args=run_args_ebs_warmnup
)
for hosts_out in output_trainers:
for line in hosts_out.stdout:
print(line)
for hosts_out in output_line_count_oc:
for line in hosts_out.stdout:
print(line)
for hosts_out in output_line_count_ebs:
for line in hosts_out.stdout:
print(line)
batch_size = 16384
kaggle_size = [7000000, 4000000, 4000000, 4000000, 4000000, 4000000, 4000000]
lookahead = [300, 200, 100, 80, 60, 40, 20]
iterations = 2000
for i in range(6):
# ========Launching Bagpipe run 1========================================
cache_size = kaggle_size[i]
lookahead_v = lookahead[i]
log_file_name = "run_dlrm_{}_num_machines_{}_run_lookahead_{}".format(
len(private_ip_trainers), batch_size, lookahead_v
)
run_args_trainers = return_args_trainers_dlrm(
private_ip_trainers, private_ip_oracle_cacher, log_file_name, iterations, cache_size, lookahead_v
)
run_args_emb_server = return_args_emb_server_dlrm(
private_ip_trainers, private_ip_oracle_cacher
)
run_args_oracle_cacher = return_args_oracle_server_dlrm(
private_ip_trainers, private_ip_oracle_cacher, batch_size, cache_size, lookahead_v
)
print("Run args trainer {}".format(run_args_trainers))
print("Run args emb server {}".format(run_args_emb_server))
print("Run args oracle cacher {}".format(run_args_oracle_cacher))
output_trainers = client_trainers.run_command(
"%(cmd)s", host_args=run_args_trainers
)
output_emb_server = client_emb_server.run_command(
"%(cmd)s", host_args=run_args_emb_server
)
output_oracle_cacher = client_oracle_cacher.run_command(
"%(cmd)s", host_args=run_args_oracle_cacher
)
for hosts_out in output_trainers:
for line in hosts_out.stdout:
print(line)
time.sleep(60)
run_args_kill_oracle = [{"cmd": "pkill -9 python"}]
run_args_kill_emb_server = [{"cmd": "pkill -9 python"}]
kill_emb_server = client_emb_server.run_command(
"%(cmd)s", host_args=run_args_kill_emb_server
)
kill_oracle_cacher = client_oracle_cacher.run_command(
"%(cmd)s", host_args=run_args_kill_oracle
)
print("Launched python kill command")
time.sleep(30)
terminate_instances(instance_ids_trainers, launch_cfg)
terminate_instances(
[instance_id_emb_server, instance_id_oracle_cacher], launch_cfg
)
if __name__ == "__main__":
run_large_scale()