-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtaxonomy_refinement.py
451 lines (394 loc) · 21 KB
/
taxonomy_refinement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import gensim
import csv
import io
import sys
import numpy as np
import gzip
import os
import argparse
import logging
from sklearn.manifold import TSNE
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from gensim.models.poincare import PoincareModel, PoincareRelations, PoincareKeyedVectors
from gensim.viz.poincare import poincare_2d_visualization
from gensim.test.utils import datapath
from data_loader import read_all_data, compound_operator
import plotly.plotly as py
from nltk.corpus import wordnet as wn
from collections import Counter
from sklearn import preprocessing
import numpy as np
from sklearn.neighbors import LocalOutlierFactor, NearestNeighbors
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import pandas
MAX_INDEX = 10000000
def compare_to_gold(gold, taxonomy, model = None, model_poincare = None, outliers = [], threshold_add = 0.4, new_nodes = [], write_file = ""):
taxonomy_c = taxonomy.copy()
global compound_operator
removed_outliers = []
for element in taxonomy_c:
if (element[0].replace(' ', compound_operator), element[1].replace(' ', compound_operator)) in outliers:
continue
removed_outliers.append((element[0], element[1]))
if new_nodes:
for element in new_nodes:
removed_outliers.append((element[0].replace(compound_operator, " "), element[1].replace(compound_operator, " ")))
removed_outliers = list(set(removed_outliers))
correct = 0
for element in removed_outliers:
for ele_g in gold:
if element[0] == ele_g[0] and element[1] == ele_g[1]:
correct+=1
break
precision = correct / float(len(removed_outliers))
recall = correct / float(len(gold))
print(str(precision).replace(".", ',') +'\t' + str(recall).replace(".", ',') + '\t' + \
str(2*precision *recall / (precision + recall)).replace(".", ',') + '\t' + str(len(new_nodes)) + '\t' + str(len(outliers)))
if write_file != None:
path = '/'.join(write_file.split('/')[:-1]) + '/'
if not os.path.exists(path):
os.makedirs(path)
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), write_file + "_refined_taxonomy.csv")
with open(path, 'w') as f:
for i, element in enumerate(removed_outliers):
f.write(str(i) + '\t' + str(element[0]) + '\t' + str(element[1]) + '\n')
f.close()
return removed_outliers
def get_parent(relations,child):
for relation in relations:
if child == relation[0]:
return relation[1]
return None
def connected_to_root(element, list_data, root):
parent = element
parent_last = None
while parent != parent_last:
parent_last = parent
for relation in list_data:
if parent == relation[0]:
parent = relation[1]
return [parent == root, parent]
def get_rank(entity1, entity2, model, threshhold):
rank_inv = None
similarities_rev = model.wv.similar_by_word(entity1, threshhold)
similarities_rev = [entry[0] for entry in similarities_rev]
for j in range(len(similarities_rev)):
temp_rev = similarities_rev[j]
if entity2 == temp_rev:
rank_inv = j
return rank_inv
def connect_to_root(gold, taxonomy, domain):
new_nodes = set([])
new_relationships = []
gold_nodes = [relation[0] for relation in gold] + [relation[1] for relation in gold]
taxonomy_nodes = (set([relation[0] for relation in taxonomy] + [relation[1] for relation in taxonomy]))
for element in gold_nodes:
if element not in taxonomy_nodes:
new_nodes.add((element, domain))
return new_nodes
def connect_new_nodes(gold, taxonomy, model, model_poincare, threshold, no_parents, no_co, wordnet = False, exclude_sub = False, outliers = None, domain = None):
structure = {}
new_nodes = set([])
new_relationships = []
gold_nodes = [relation[0] for relation in gold] + [relation[1] for relation in gold]
taxonomy_nodes = (set([relation[0] for relation in taxonomy] + [relation[1] for relation in taxonomy]))
results_parents, results_substring, pairs_parents, results_co, pairs_co = [], [], [], [], []
for element in gold_nodes:
if element not in taxonomy_nodes:
new_nodes.add(element)
relations = taxonomy.copy()
for i in range(len(relations)):
relations[i] = (relations[i][0].replace(" ", compound_operator), relations[i][1].replace(" ", compound_operator))
for parent in [relation[1] for relation in relations]:
structure[parent] = [relation[0] for relation in relations if relation[1] == parent]
for node in new_nodes:
node = node.replace(" ", compound_operator)
result_co_min, result_parent_min = MAX_INDEX, MAX_INDEX
pair_co_min, pair_parents_min = 0, 0
for key in structure:
if key == node:
continue
parents = structure[key]
if not no_co:
parents = [word for word in structure[key].copy() if word in model.wv]
if not no_parents:
parents = [word for word in structure[key].copy() if word in model_poincare.kv]
result_parent, pair_parent, result_co, pair_co = get_rank(node, key, parents, model, model_poincare, no_parents, no_co, compound = True, wordnet = wordnet)
if result_parent < result_parent_min and result_parent != 0 and pair_parent[0] != domain:
result_parent_min = result_parent
pair_parent_min = pair_parent
if result_co < result_co_min and result_co != 0 and pair_co[0] != domain:
result_co_min = result_co
pair_co_min = pair_co
if result_parent_min != MAX_INDEX or result_co_min != MAX_INDEX:
if result_parent_min != MAX_INDEX:
results_parents.append(result_parent_min)
pairs_parents.append(pair_parent_min)
if result_co_min != MAX_INDEX:
results_co.append(result_co_min)
pairs_co.append(pair_co_min)
elif node.split('_')[0] in structure and not exclude_sub:
results_substring.append((node, node.split('_')[0]))
elif node.split('_')[-1] in structure and not exclude_sub:
results_substring.append((node, node.split('_')[-1]))
if not no_parents:
outliers_parents = find_outliers(results_parents, pairs_parents, threshold, mode = 'attach')
new_relationships = list(set(outliers_parents)|set(results_substring))
if not no_co:
outliers_co = find_outliers(results_co, pairs_co, threshold, mode = 'attach')
new_relationships = list(set(outliers_co)|set(results_substring))
return new_relationships
def get_rank(current_child, parent, children, model, model_poincare, no_parents, no_co, compound = True, wordnet = False):
result_co, pair_co, result_parent, pair_parent = 0, 0, 0, 0
current_child2 = current_child.replace(compound_operator, " ")
parent2 = parent.replace(compound_operator, " ")
if not no_co:
try:
children = [chi for chi in children if chi != current_child]
if children:
most_similar_child = model.wv.most_similar_to_given(current_child, children)
index_child = model.wv.distance(current_child, most_similar_child)
result_co = index_child
pair_co = (current_child,parent)
except (KeyError,ZeroDivisionError) as e:
result_co = 0
if not no_parents:
try:
if wordnet:
if compound:
current_child2 = current_child
parent2 = parent
index_parent = MAX_INDEX
parents = [ele for ele in model_poincare.kv.vocab if parent2 == ele.split(".")[0]]
children = [ele for ele in model_poincare.kv.vocab if current_child2 == ele.split(".")[0]]
for parento in parents:
for child in children:
index_parent_c = model_poincare.kv.rank(child, parento)
if index_parent_c < index_parent:
index_parent = index_parent_c
if index_parent == MAX_INDEX:
index_parent = 0
else:
if compound:
index_parent = model_poincare.kv.rank(current_child, parent)
else:
index_parent = model_poincare.kv.rank(current_child2,parent2)
result_parent = index_parent
pair_parent = (current_child,parent)
except KeyError as e:
result_parent = 0
return [result_parent, pair_parent, result_co, pair_co]
#create dictionary mit den begirffen wegen bindestrich
def calculate_outliers(relations_o, model, model_poincare = None, threshold = None, no_parents = False, no_co = True, compound = False, wordnet = False, exclude_sub = False):
outliers, results_parents, pairs_parents, results_co, pairs_co = [], [], [] ,[], []
structure = {}
relations = relations_o.copy()
for i in range(len(relations)):
relations[i] = (relations[i][0].replace(" ", compound_operator), relations[i][1].replace(" ", compound_operator))
#Dictionary with each parent and its children in the taxonomy
for parent in [relation[1] for relation in relations]:
structure[parent] = [relation[0] for relation in relations if relation[1] == parent]
for key in structure:
parents = structure[key]
if not no_co:
parents = [word for word in structure[key].copy() if word in model.wv]
if not no_parents and not wordnet:
parents = [word for word in structure[key].copy() if word in model_poincare.kv]
for child in parents:
try:
result_parent, pair_parent, result_co, pair_co = get_rank(child, key, parents, model, model_poincare, no_parents, no_co, compound, wordnet)
except:
result_parent, result_co = 0, 0
if result_parent != 0:
if not exclude_sub:
if child.split("_")[0] != key and child.split("_")[-1] != key:
results_parents.append(result_parent)
pairs_parents.append(pair_parent)
else:
results_parents.append(result_parent)
pairs_parents.append(pair_parent)
if result_co != 0:
if not exclude_sub:
if child.split("_")[0] != key and child.split("_")[-1] != key:
results_co.append(result_co)
pairs_co.append(pair_co)
else:
results_co.append(result_co)
pairs_co.append(pair_co)
if not no_parents:
outliers_parents = find_outliers(results_parents, pairs_parents, threshold)
outliers = list(outliers_parents)
if not no_co:
outliers_co = find_outliers(results_co, pairs_co, threshold)
outliers = list(outliers_co)
return outliers
def replace_outliers(taxonomy, outliers, domain, model, model_poincare, no_parents, no_co, wordnet = False, exclude_sub = False):
orphans =set([])
structure = {}
taxonomy_nodes = (set([relation[0] for relation in taxonomy] + [relation[1] for relation in taxonomy]))
results_parents, results_substring, pairs_parents, results_co, pairs_co, new_relationships = [], [] ,[] ,[] ,[], []
for element in [outlier[0] for outlier in outliers] + [outlier[1] for outlier in outliers]:
if element not in taxonomy_nodes:
continue
ele_parent = connected_to_root(element, taxonomy, domain)
if not ele_parent[0] and ele_parent[1] == element:
orphans.add(element)
relations = taxonomy.copy()
for i in range(len(relations)):
relations[i] = (relations[i][0].replace(" ", compound_operator), relations[i][1].replace(" ", compound_operator))
for parent in [relation[1] for relation in relations]:
structure[parent] = [relation[0] for relation in relations if relation[1] == parent]
for node in orphans:
node = node.replace(" ", compound_operator)
result_co_min, result_parent_min = MAX_INDEX, MAX_INDEX
pair_co_min, pair_parents_min = 0, 0
for key in structure.keys():
if key == node:
continue
parents = structure[key]
if not no_co:
parents = [word for word in structure[key].copy() if word in model.wv]
if not no_parents:
parents = [word for word in structure[key].copy() if word in model_poincare.kv]
result_parent, pair_parent, result_co, pair_co = get_rank(node, key, structure[key], model, model_poincare, no_parents, no_co, compound = True, wordnet = wordnet)
if result_parent < result_parent_min and result_parent != 0:
result_parent_min = result_parent
pair_parent_min = pair_parent
if result_co < result_co_min and result_co != 0:
result_co_min = result_co
pair_co_min = pair_co
if result_parent_min != MAX_INDEX or result_co_min != MAX_INDEX:
if result_parent_min != MAX_INDEX:
results_parents.append(result_parent_min)
pairs_parents.append(pair_parent_min)
if result_co_min != MAX_INDEX:
results_co.append(result_co_min)
pairs_co.append(pair_co_min)
elif node.split('_')[0] in structure and not exclude_sub:
results_substring.append((node, node.split('_')[0]))
elif node.split('_')[-1] in structure and not exclude_sub:
results_substring.append((node, node.split('_')[-1]))
results_substring = set(results_substring)
pairs_parents = set(pairs_parents)
pairs_co = set(pairs_co)
if not no_parents:
new_relationships = list(set(pairs_parents|results_substring))
if not no_co:
new_relationships = list(set(pairs_co)|results_substring)
return new_relationships
def find_outliers(results, pairs, threshold, mode = "removal"):
print("num results", len(results))
outliers = set([])
num_clusters = threshold#15 wordnet #6 own_poincare
results_all_s = np.asarray(results).reshape(-1,1)
best_cluster = threshold
if len(results_all_s) == 0:
return set([])
results_pairs = []
for i in range(len(results)):
results_pairs.append((i, results[i]))
results_sorted = sorted(results_pairs, key=lambda x: x[1])
average = 0
for element in results:
average+=element
average /= len(results)
if mode == 'attach':
for value in results_sorted:
if value[1] <= average:
outliers.add(pairs[value[0]])
elif mode == 'removal':
for value in results_sorted:
if value[1] > average: #wn -0.3
outliers.add(pairs[value[0]])
return outliers
def load_embeddings(include_co, exclude_parent, wordnet, domain, language = 'EN'):
model = None
model_poincare = None
if include_co:
if language == 'EN':
model = gensim.models.KeyedVectors.load('embeddings/own_embeddings_w2v_all')
print("Word2vec vocab size", len(model.wv.vocab))
else:
print("There is no wordnet poincaré model for a non-english language\nAbort...")
sys.exit()
if not exclude_parent:
if wordnet:
if language == 'EN':
model_poincare = PoincareModel.load('embeddings/wordnet_filtered_50')
else:
print("There is no wordnet poincaré model for a non-english language\nAbort...")
sys.exit()
else:
assert language in ['EN', 'FR', 'IT', 'NL'] , "Language not supported. Aborting..."
#model_poincare = PoincareModel.load('embeddings/poincare_common_domains_5_3_' + language + '_' + domain + '_50')
model_poincare = PoincareModel.load('embeddings/poincare_common_and_domains_5_3_' + language + '_50')
print("Poincare vocab size", len(model_poincare.kv.vocab))
#print(model_poincare.kv.vocab)
#wordlist = ["volcanic_eruption", "whipped_cream", 'ordinary_differential_equations', "Atlantic_Ocean", "electrical_engineering", "vanilla_extract", "wastewater", "lake", "freshwater", "water"]
#wordlist = ["international_relations", "second_language_acquisition", "botany", "sweet_potatoes"]
# for word in wordlist:
# print(word)
# distances = list(model_poincare.kv.distances(word))
# pairs = list(zip(distances, list(model_poincare.kv.vocab)))
# pairs = sorted(pairs)
# closest = [element[1] for element in pairs[:5]]
# print(closest, '\n')
return [model, model_poincare]
def main():
parser = argparse.ArgumentParser(description="Embeddings for Taxonomy")
parser.add_argument('-m', '--mode', type=str, default='preload', choices=["root", "distributed_semantics", "eval"], help="Mode of the system.")
parser.add_argument('-d', '--domain', type=str, default='science', help="Domain")
parser.add_argument('-l', '--language', type=str, default='EN', choices=["EN", "FR", "IT", "NL"], help="Embedding to use")
parser.add_argument('-ep', '--exparent', action='store_true', help='Exclude "parent" relations')
parser.add_argument('-sys','--system', type=str, choices =["TAXI", "USAAR", "QASSIT", "JUNLP", "NUIG-UNLP"])
parser.add_argument('-ico', '--inco', action='store_true', help='Include "co-hypernym relations')
parser.add_argument('-com', '--compound', action='store_true', help='Includes compound word in outlier removal')
parser.add_argument('-wn', '--wordnet', action ='store_true', help= 'Use Wordnet instead of own embeddings')
parser.add_argument('-es', '--exclude_sub', action='store_true', help="Uses substring method")
parser.add_argument('-pin', '--input_path', type=str, help="Set path for input taxonomy")
parser.add_argument('-pout', '--output_path', type=str, help="Set path for refined taxonomy")
args = parser.parse_args()
print("Mode: ", args.mode)
run(args.mode, args.domain, args.language, args.input_path, args.output_path, args.exparent, args.inco, args.compound, args.wordnet, args.exclude_sub, args.system)
def run(mode, domain, language, path_in, path_out, exclude_parent = False, include_co = False, compound = False, wordnet = False, exclude_sub = False, system = "TAXI"):
if mode == 'distributed_semantics':
if domain in ["environment", "environnement", "ambiente", "milieu"]:
domain_l = "environment"
elif domain in ["science", "scienze", "wetenschap"]:
domain_l = "science"
elif domain in ["food", "alimentation", "alimenti", "voedsel"]:
domain_l = "food"
model, model_poincare = load_embeddings(include_co, exclude_parent, wordnet, domain_l, language)
taxonomy = []
outliers = []
exclude_co = not include_co
gold, relations = read_all_data(path_in, system, domain, language)
voc = set([rel[0] for rel in relations] + [rel[1] for rel in relations])
g_voc = set([rel[0] for rel in gold] + [rel[1] for rel in gold])
diff = len(g_voc) - len(voc)
print(len(voc))
print("Orphans at start", diff)
compare_to_gold(gold = gold, taxonomy = relations, model = model, model_poincare = model_poincare)
outliers = calculate_outliers(relations, model, threshold = 2, model_poincare = model_poincare, compound = compound, no_parents = exclude_parent,
no_co = exclude_co, wordnet = wordnet, exclude_sub = exclude_sub)
#print(outliers)
relations2 = compare_to_gold(gold = gold, taxonomy = relations, model = model, model_poincare = model_poincare, outliers = outliers)
replaced_outliers = replace_outliers(taxonomy = relations2, outliers = outliers, domain = domain, model = model, model_poincare = model_poincare,
no_parents = exclude_parent, no_co = exclude_co, wordnet = wordnet, exclude_sub = exclude_sub)
relations3 = compare_to_gold(gold = gold, taxonomy = relations2, model = model, model_poincare = model_poincare, new_nodes = replaced_outliers)
new_nodes = connect_new_nodes(taxonomy = relations3, gold = gold, model = model, model_poincare = model_poincare, threshold = 2,
no_parents = exclude_parent, no_co = exclude_co, wordnet = wordnet, exclude_sub = exclude_sub, outliers = outliers, domain = domain)
#print(new_nodes)
relations_final = compare_to_gold(gold = gold, taxonomy = relations3, new_nodes = new_nodes, model = model, model_poincare = model_poincare, write_file = path_out)
elif mode == 'root':
gold, relations = read_all_data(path_in, system, domain)
root = connect_to_root(taxonomy = relations, gold = gold, domain = domain)
compare_to_gold(gold = gold, taxonomy = relations, new_nodes = root, write_file = path_out)
if __name__ == '__main__':
main()