-
Notifications
You must be signed in to change notification settings - Fork 60
/
h3_coordijk.c
705 lines (625 loc) · 17.8 KB
/
h3_coordijk.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/*
* Copyright 2016-2018, 2020-2022 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file coordijk.c
* @brief Hex IJK coordinate systems functions including conversions to/from
* lat/lng.
*/
#include "h3_coordijk.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "h3_constants.h"
#include "h3_h3Assert.h"
#include "h3_latLng.h"
#include "h3_mathExtensions.h"
#define INT32_MAX_3 (INT32_MAX / 3)
/**
* Sets an IJK coordinate to the specified component values.
*
* @param ijk The IJK coordinate to set.
* @param i The desired i component value.
* @param j The desired j component value.
* @param k The desired k component value.
*/
void _setIJK(CoordIJK *ijk, int i, int j, int k) {
ijk->i = i;
ijk->j = j;
ijk->k = k;
}
/**
* Determine the containing hex in ijk+ coordinates for a 2D cartesian
* coordinate vector (from DGGRID).
*
* @param v The 2D cartesian coordinate vector.
* @param h The ijk+ coordinates of the containing hex.
*/
void _hex2dToCoordIJK(const Vec2d *v, CoordIJK *h) {
double a1, a2;
double x1, x2;
int m1, m2;
double r1, r2;
// quantize into the ij system and then normalize
h->k = 0;
a1 = fabsl(v->x);
a2 = fabsl(v->y);
// first do a reverse conversion
x2 = a2 / M_SIN60;
x1 = a1 + x2 / 2.0L;
// check if we have the center of a hex
m1 = x1;
m2 = x2;
// otherwise round correctly
r1 = x1 - m1;
r2 = x2 - m2;
if (r1 < 0.5L) {
if (r1 < 1.0L / 3.0L) {
if (r2 < (1.0L + r1) / 2.0L) {
h->i = m1;
h->j = m2;
} else {
h->i = m1;
h->j = m2 + 1;
}
} else {
if (r2 < (1.0L - r1)) {
h->j = m2;
} else {
h->j = m2 + 1;
}
if ((1.0L - r1) <= r2 && r2 < (2.0 * r1)) {
h->i = m1 + 1;
} else {
h->i = m1;
}
}
} else {
if (r1 < 2.0L / 3.0L) {
if (r2 < (1.0L - r1)) {
h->j = m2;
} else {
h->j = m2 + 1;
}
if ((2.0L * r1 - 1.0L) < r2 && r2 < (1.0L - r1)) {
h->i = m1;
} else {
h->i = m1 + 1;
}
} else {
if (r2 < (r1 / 2.0L)) {
h->i = m1 + 1;
h->j = m2;
} else {
h->i = m1 + 1;
h->j = m2 + 1;
}
}
}
// now fold across the axes if necessary
if (v->x < 0.0L) {
if ((h->j % 2) == 0) // even
{
long long int axisi = h->j / 2;
long long int diff = h->i - axisi;
h->i = h->i - 2.0 * diff;
} else {
long long int axisi = (h->j + 1) / 2;
long long int diff = h->i - axisi;
h->i = h->i - (2.0 * diff + 1);
}
}
if (v->y < 0.0L) {
h->i = h->i - (2 * h->j + 1) / 2;
h->j = -1 * h->j;
}
_ijkNormalize(h);
}
/**
* Find the center point in 2D cartesian coordinates of a hex.
*
* @param h The ijk coordinates of the hex.
* @param v The 2D cartesian coordinates of the hex center point.
*/
void _ijkToHex2d(const CoordIJK *h, Vec2d *v) {
int i = h->i - h->k;
int j = h->j - h->k;
v->x = i - 0.5L * j;
v->y = j * M_SQRT3_2;
}
/**
* Returns whether or not two ijk coordinates contain exactly the same
* component values.
*
* @param c1 The first set of ijk coordinates.
* @param c2 The second set of ijk coordinates.
* @return 1 if the two addresses match, 0 if they do not.
*/
int _ijkMatches(const CoordIJK *c1, const CoordIJK *c2) {
return (c1->i == c2->i && c1->j == c2->j && c1->k == c2->k);
}
/**
* Add two ijk coordinates.
*
* @param h1 The first set of ijk coordinates.
* @param h2 The second set of ijk coordinates.
* @param sum The sum of the two sets of ijk coordinates.
*/
void _ijkAdd(const CoordIJK *h1, const CoordIJK *h2, CoordIJK *sum) {
sum->i = h1->i + h2->i;
sum->j = h1->j + h2->j;
sum->k = h1->k + h2->k;
}
/**
* Subtract two ijk coordinates.
*
* @param h1 The first set of ijk coordinates.
* @param h2 The second set of ijk coordinates.
* @param diff The difference of the two sets of ijk coordinates (h1 - h2).
*/
void _ijkSub(const CoordIJK *h1, const CoordIJK *h2, CoordIJK *diff) {
diff->i = h1->i - h2->i;
diff->j = h1->j - h2->j;
diff->k = h1->k - h2->k;
}
/**
* Uniformly scale ijk coordinates by a scalar. Works in place.
*
* @param c The ijk coordinates to scale.
* @param factor The scaling factor.
*/
void _ijkScale(CoordIJK *c, int factor) {
c->i *= factor;
c->j *= factor;
c->k *= factor;
}
/**
* Returns true if _ijkNormalize with the given input could have a signed
* integer overflow. Assumes k is set to 0.
*/
bool _ijkNormalizeCouldOverflow(const CoordIJK *ijk) {
// Check for the possibility of overflow
int max, min;
if (ijk->i > ijk->j) {
max = ijk->i;
min = ijk->j;
} else {
max = ijk->j;
min = ijk->i;
}
if (min < 0) {
// Only if the min is less than 0 will the resulting number be larger
// than max. If min is positive, then max is also positive, and a
// positive signed integer minus another positive signed integer will
// not overflow.
if (ADD_INT32S_OVERFLOWS(max, min)) {
// max + min would overflow
return true;
}
if (SUB_INT32S_OVERFLOWS(0, min)) {
// 0 - INT32_MIN would overflow
return true;
}
if (SUB_INT32S_OVERFLOWS(max, min)) {
// max - min would overflow
return true;
}
}
return false;
}
/**
* Normalizes ijk coordinates by setting the components to the smallest possible
* values. Works in place.
*
* This function does not protect against signed integer overflow. The caller
* must ensure that none of (i - j), (i - k), (j - i), (j - k), (k - i), (k - j)
* will overflow. This function may be changed in the future to make that check
* itself and return an error code.
*
* @param c The ijk coordinates to normalize.
*/
void _ijkNormalize(CoordIJK *c) {
// remove any negative values
if (c->i < 0) {
c->j -= c->i;
c->k -= c->i;
c->i = 0;
}
if (c->j < 0) {
c->i -= c->j;
c->k -= c->j;
c->j = 0;
}
if (c->k < 0) {
c->i -= c->k;
c->j -= c->k;
c->k = 0;
}
// remove the min value if needed
int min = c->i;
if (c->j < min) min = c->j;
if (c->k < min) min = c->k;
if (min > 0) {
c->i -= min;
c->j -= min;
c->k -= min;
}
}
/**
* Determines the H3 digit corresponding to a unit vector or the zero vector
* in ijk coordinates.
*
* @param ijk The ijk coordinates; must be a unit vector or zero vector.
* @return The H3 digit (0-6) corresponding to the ijk unit vector, zero vector,
* or INVALID_DIGIT (7) on failure.
*/
Direction _unitIjkToDigit(const CoordIJK *ijk) {
CoordIJK c = *ijk;
_ijkNormalize(&c);
Direction digit = INVALID_DIGIT;
for (Direction i = CENTER_DIGIT; i < NUM_DIGITS; i++) {
if (_ijkMatches(&c, &UNIT_VECS[i])) {
digit = i;
break;
}
}
return digit;
}
/**
* Returns non-zero if _upAp7 with the given input could have a signed integer
* overflow.
*
* Assumes ijk is IJK+ coordinates (no negative numbers).
*/
H3Error _upAp7Checked(CoordIJK *ijk) {
// Doesn't need to be checked because i, j, and k must all be non-negative
int i = ijk->i - ijk->k;
int j = ijk->j - ijk->k;
// <0 is checked because the input must all be non-negative, but some
// negative inputs are used in unit tests to exercise the below.
if (i >= INT32_MAX_3 || j >= INT32_MAX_3 || i < 0 || j < 0) {
if (ADD_INT32S_OVERFLOWS(i, i)) {
return E_FAILED;
}
int i2 = i + i;
if (ADD_INT32S_OVERFLOWS(i2, i)) {
return E_FAILED;
}
int i3 = i2 + i;
if (ADD_INT32S_OVERFLOWS(j, j)) {
return E_FAILED;
}
int j2 = j + j;
if (SUB_INT32S_OVERFLOWS(i3, j)) {
return E_FAILED;
}
if (ADD_INT32S_OVERFLOWS(i, j2)) {
return E_FAILED;
}
}
// TODO: Do the int math parts here in long double?
ijk->i = (int)lroundl(((i * 3) - j) / 7.0L);
ijk->j = (int)lroundl((i + (j * 2)) / 7.0L);
ijk->k = 0;
// Expected not to be reachable, because max + min or max - min would need
// to overflow.
if (NEVER(_ijkNormalizeCouldOverflow(ijk))) {
return E_FAILED;
}
_ijkNormalize(ijk);
return E_SUCCESS;
}
/**
* Returns non-zero if _upAp7r with the given input could have a signed integer
* overflow.
*
* Assumes ijk is IJK+ coordinates (no negative numbers).
*/
H3Error _upAp7rChecked(CoordIJK *ijk) {
// Doesn't need to be checked because i, j, and k must all be non-negative
int i = ijk->i - ijk->k;
int j = ijk->j - ijk->k;
// <0 is checked because the input must all be non-negative, but some
// negative inputs are used in unit tests to exercise the below.
if (i >= INT32_MAX_3 || j >= INT32_MAX_3 || i < 0 || j < 0) {
if (ADD_INT32S_OVERFLOWS(i, i)) {
return E_FAILED;
}
int i2 = i + i;
if (ADD_INT32S_OVERFLOWS(j, j)) {
return E_FAILED;
}
int j2 = j + j;
if (ADD_INT32S_OVERFLOWS(j2, j)) {
return E_FAILED;
}
int j3 = j2 + j;
if (ADD_INT32S_OVERFLOWS(i2, j)) {
return E_FAILED;
}
if (SUB_INT32S_OVERFLOWS(j3, i)) {
return E_FAILED;
}
}
// TODO: Do the int math parts here in long double?
ijk->i = (int)lroundl(((i * 2) + j) / 7.0L);
ijk->j = (int)lroundl(((j * 3) - i) / 7.0L);
ijk->k = 0;
// Expected not to be reachable, because max + min or max - min would need
// to overflow.
if (NEVER(_ijkNormalizeCouldOverflow(ijk))) {
return E_FAILED;
}
_ijkNormalize(ijk);
return E_SUCCESS;
}
/**
* Find the normalized ijk coordinates of the indexing parent of a cell in a
* counter-clockwise aperture 7 grid. Works in place.
*
* @param ijk The ijk coordinates.
*/
void _upAp7(CoordIJK *ijk) {
// convert to CoordIJ
int i = ijk->i - ijk->k;
int j = ijk->j - ijk->k;
ijk->i = (int)lroundl((3 * i - j) / 7.0L);
ijk->j = (int)lroundl((i + 2 * j) / 7.0L);
ijk->k = 0;
_ijkNormalize(ijk);
}
/**
* Find the normalized ijk coordinates of the indexing parent of a cell in a
* clockwise aperture 7 grid. Works in place.
*
* @param ijk The ijk coordinates.
*/
void _upAp7r(CoordIJK *ijk) {
// convert to CoordIJ
int i = ijk->i - ijk->k;
int j = ijk->j - ijk->k;
ijk->i = (int)lroundl((2 * i + j) / 7.0L);
ijk->j = (int)lroundl((3 * j - i) / 7.0L);
ijk->k = 0;
_ijkNormalize(ijk);
}
/**
* Find the normalized ijk coordinates of the hex centered on the indicated
* hex at the next finer aperture 7 counter-clockwise resolution. Works in
* place.
*
* @param ijk The ijk coordinates.
*/
void _downAp7(CoordIJK *ijk) {
// res r unit vectors in res r+1
CoordIJK iVec = {3, 0, 1};
CoordIJK jVec = {1, 3, 0};
CoordIJK kVec = {0, 1, 3};
_ijkScale(&iVec, ijk->i);
_ijkScale(&jVec, ijk->j);
_ijkScale(&kVec, ijk->k);
_ijkAdd(&iVec, &jVec, ijk);
_ijkAdd(ijk, &kVec, ijk);
_ijkNormalize(ijk);
}
/**
* Find the normalized ijk coordinates of the hex centered on the indicated
* hex at the next finer aperture 7 clockwise resolution. Works in place.
*
* @param ijk The ijk coordinates.
*/
void _downAp7r(CoordIJK *ijk) {
// res r unit vectors in res r+1
CoordIJK iVec = {3, 1, 0};
CoordIJK jVec = {0, 3, 1};
CoordIJK kVec = {1, 0, 3};
_ijkScale(&iVec, ijk->i);
_ijkScale(&jVec, ijk->j);
_ijkScale(&kVec, ijk->k);
_ijkAdd(&iVec, &jVec, ijk);
_ijkAdd(ijk, &kVec, ijk);
_ijkNormalize(ijk);
}
/**
* Find the normalized ijk coordinates of the hex in the specified digit
* direction from the specified ijk coordinates. Works in place.
*
* @param ijk The ijk coordinates.
* @param digit The digit direction from the original ijk coordinates.
*/
void _neighbor(CoordIJK *ijk, Direction digit) {
if (digit > CENTER_DIGIT && digit < NUM_DIGITS) {
_ijkAdd(ijk, &UNIT_VECS[digit], ijk);
_ijkNormalize(ijk);
}
}
/**
* Rotates ijk coordinates 60 degrees counter-clockwise. Works in place.
*
* @param ijk The ijk coordinates.
*/
void _ijkRotate60ccw(CoordIJK *ijk) {
// unit vector rotations
CoordIJK iVec = {1, 1, 0};
CoordIJK jVec = {0, 1, 1};
CoordIJK kVec = {1, 0, 1};
_ijkScale(&iVec, ijk->i);
_ijkScale(&jVec, ijk->j);
_ijkScale(&kVec, ijk->k);
_ijkAdd(&iVec, &jVec, ijk);
_ijkAdd(ijk, &kVec, ijk);
_ijkNormalize(ijk);
}
/**
* Rotates ijk coordinates 60 degrees clockwise. Works in place.
*
* @param ijk The ijk coordinates.
*/
void _ijkRotate60cw(CoordIJK *ijk) {
// unit vector rotations
CoordIJK iVec = {1, 0, 1};
CoordIJK jVec = {1, 1, 0};
CoordIJK kVec = {0, 1, 1};
_ijkScale(&iVec, ijk->i);
_ijkScale(&jVec, ijk->j);
_ijkScale(&kVec, ijk->k);
_ijkAdd(&iVec, &jVec, ijk);
_ijkAdd(ijk, &kVec, ijk);
_ijkNormalize(ijk);
}
/**
* Rotates indexing digit 60 degrees counter-clockwise. Returns result.
*
* @param digit Indexing digit (between 1 and 6 inclusive)
*/
Direction _rotate60ccw(Direction digit) {
switch (digit) {
case K_AXES_DIGIT:
return IK_AXES_DIGIT;
case IK_AXES_DIGIT:
return I_AXES_DIGIT;
case I_AXES_DIGIT:
return IJ_AXES_DIGIT;
case IJ_AXES_DIGIT:
return J_AXES_DIGIT;
case J_AXES_DIGIT:
return JK_AXES_DIGIT;
case JK_AXES_DIGIT:
return K_AXES_DIGIT;
default:
return digit;
}
}
/**
* Rotates indexing digit 60 degrees clockwise. Returns result.
*
* @param digit Indexing digit (between 1 and 6 inclusive)
*/
Direction _rotate60cw(Direction digit) {
switch (digit) {
case K_AXES_DIGIT:
return JK_AXES_DIGIT;
case JK_AXES_DIGIT:
return J_AXES_DIGIT;
case J_AXES_DIGIT:
return IJ_AXES_DIGIT;
case IJ_AXES_DIGIT:
return I_AXES_DIGIT;
case I_AXES_DIGIT:
return IK_AXES_DIGIT;
case IK_AXES_DIGIT:
return K_AXES_DIGIT;
default:
return digit;
}
}
/**
* Find the normalized ijk coordinates of the hex centered on the indicated
* hex at the next finer aperture 3 counter-clockwise resolution. Works in
* place.
*
* @param ijk The ijk coordinates.
*/
void _downAp3(CoordIJK *ijk) {
// res r unit vectors in res r+1
CoordIJK iVec = {2, 0, 1};
CoordIJK jVec = {1, 2, 0};
CoordIJK kVec = {0, 1, 2};
_ijkScale(&iVec, ijk->i);
_ijkScale(&jVec, ijk->j);
_ijkScale(&kVec, ijk->k);
_ijkAdd(&iVec, &jVec, ijk);
_ijkAdd(ijk, &kVec, ijk);
_ijkNormalize(ijk);
}
/**
* Find the normalized ijk coordinates of the hex centered on the indicated
* hex at the next finer aperture 3 clockwise resolution. Works in place.
*
* @param ijk The ijk coordinates.
*/
void _downAp3r(CoordIJK *ijk) {
// res r unit vectors in res r+1
CoordIJK iVec = {2, 1, 0};
CoordIJK jVec = {0, 2, 1};
CoordIJK kVec = {1, 0, 2};
_ijkScale(&iVec, ijk->i);
_ijkScale(&jVec, ijk->j);
_ijkScale(&kVec, ijk->k);
_ijkAdd(&iVec, &jVec, ijk);
_ijkAdd(ijk, &kVec, ijk);
_ijkNormalize(ijk);
}
/**
* Finds the distance between the two coordinates. Returns result.
*
* @param c1 The first set of ijk coordinates.
* @param c2 The second set of ijk coordinates.
*/
int ijkDistance(const CoordIJK *c1, const CoordIJK *c2) {
CoordIJK diff;
_ijkSub(c1, c2, &diff);
_ijkNormalize(&diff);
CoordIJK absDiff = {abs(diff.i), abs(diff.j), abs(diff.k)};
return MAX(absDiff.i, MAX(absDiff.j, absDiff.k));
}
/**
* Transforms coordinates from the IJK+ coordinate system to the IJ coordinate
* system.
*
* @param ijk The input IJK+ coordinates
* @param ij The output IJ coordinates
*/
void ijkToIj(const CoordIJK *ijk, CoordIJ *ij) {
ij->i = ijk->i - ijk->k;
ij->j = ijk->j - ijk->k;
}
/**
* Transforms coordinates from the IJ coordinate system to the IJK+ coordinate
* system.
*
* @param ij The input IJ coordinates
* @param ijk The output IJK+ coordinates
* @returns E_SUCCESS on success, E_FAILED if signed integer overflow would have
* occurred.
*/
H3Error ijToIjk(const CoordIJ *ij, CoordIJK *ijk) {
ijk->i = ij->i;
ijk->j = ij->j;
ijk->k = 0;
if (_ijkNormalizeCouldOverflow(ijk)) {
return E_FAILED;
}
_ijkNormalize(ijk);
return E_SUCCESS;
}
/**
* Convert IJK coordinates to cube coordinates, in place
* @param ijk Coordinate to convert
*/
void ijkToCube(CoordIJK *ijk) {
ijk->i = -ijk->i + ijk->k;
ijk->j = ijk->j - ijk->k;
ijk->k = -ijk->i - ijk->j;
}
/**
* Convert cube coordinates to IJK coordinates, in place
* @param ijk Coordinate to convert
*/
void cubeToIjk(CoordIJK *ijk) {
ijk->i = -ijk->i;
ijk->k = 0;
_ijkNormalize(ijk);
}