-
Notifications
You must be signed in to change notification settings - Fork 0
/
Face and Body.py
104 lines (75 loc) · 3.63 KB
/
Face and Body.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import numpy as np
import tensorflow as tf
import sys
import cv2
class DetectorAPI:
def __init__(self, path_to_ckpt):
self.path_to_ckpt = path_to_ckpt
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.default_graph = self.detection_graph.as_default()
self.sess = tf.Session(graph=self.detection_graph)
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
def processFrame(self, image):
image_np_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = self.sess.run(
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
im_height, im_width,_ = image.shape
boxes_list = [None for i in range(boxes.shape[1])]
for i in range(boxes.shape[1]):
boxes_list[i] = (int(boxes[0,i,0] * im_height),
int(boxes[0,i,1]*im_width),
int(boxes[0,i,2] * im_height),
int(boxes[0,i,3]*im_width))
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
def close(self):
self.sess.close()
self.default_graph.close()
if __name__ == "__main__":
model_path = 'faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb'
odapi = DetectorAPI(path_to_ckpt=model_path)
threshold = 0.7
arg = sys.argv[1]
img = cv2.imread(arg)
img = cv2.resize(img, (1280, 720))
boxes, scores, classes, num = odapi.processFrame(img)
for i in range(len(boxes)):
if classes[i]==1 and scores[i] > threshold:
box = boxes[i]
print("Body Detected")
model_path_1 = 'frozen_inference_graph_face.pb'
odapi1 = DetectorAPI(path_to_ckpt=model_path_1)
threshold = 0.7
box = boxes[i]
cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,0),4)
boxes1, scores1, classes1, num1 = odapi1.processFrame(img)
for j in range(len(boxes1)):
threshold1 = 0.57
print(classes[j],"m,mda,ma")
if(classes1[j]==1):
if scores1[j] > threshold1:
box1 = boxes1[j]
cv2.rectangle(img,(box1[1],box1[0]),(box1[3],box1[2]),(155,155,0),2)
cv2.putText(img,"Face Detected",(box1[1]+box1[0],box1[0]),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 125, 255), lineType=cv2.LINE_AA)
else:
print(classes1[j])
cv2.putText(img,"Face Not Detected",(box[1]+box[0],box[0]),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 125, 255), lineType=cv2.LINE_AA)
cv2.imshow("preview", img)
key = cv2.waitKey(0)
if key & 0xFF == ord('q'):
cv2.destroyAllWindows()
# In[ ]:
# In[ ]: