-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredictor.py
328 lines (254 loc) · 12.9 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import librosa
import time
from pathlib import Path
import pickle
from tqdm import tqdm
from collections import Counter
import numpy as np
import sys
import os
from net import EffNetb0
import math
from data_utils import AudioDataset
FRAME_LENGTH = librosa.frames_to_time(1, sr=44100, hop_length=1024)
class EffNetPredictor:
def __init__(self, device= "cuda:0", model_path=None):
"""
Params:
model_path: Optional pretrained model file
"""
# Initialize model
self.device = device
if model_path is not None:
self.model = EffNetb0().to(self.device)
self.model.load_state_dict(torch.load(model_path, map_location=self.device), strict=False)
print('Model read from {}.'.format(model_path))
else:
self.model = EffNetb0().to(self.device)
print('Predictor initialized.')
def fit(self, train_dataset_path, valid_dataset_path, model_dir, **training_args):
"""
train_dataset_path: The path to the training dataset.pkl
valid_dataset_path: The path to the validation dataset.pkl
model_dir: The directory to save models for each epoch
training_args:
- batch_size
- valid_batch_size
- epoch
- lr
- save_every_epoch
"""
# Set paths
self.train_dataset_path = train_dataset_path
self.valid_dataset_path = valid_dataset_path
self.model_dir = model_dir
Path(self.model_dir).mkdir(parents=True, exist_ok=True)
# Set training params
self.batch_size = training_args['batch_size']
self.valid_batch_size = training_args['valid_batch_size']
self.epoch = training_args['epoch']
self.lr = training_args['lr']
self.save_every_epoch = training_args['save_every_epoch']
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
self.onset_criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([15.0,], device=self.device))
self.offset_criterion = nn.BCEWithLogitsLoss()
self.octave_criterion = nn.CrossEntropyLoss(ignore_index=100)
self.pitch_criterion = nn.CrossEntropyLoss(ignore_index=100)
# Read the datasets
print('Reading datasets...')
print ('cur time: %.6f' %(time.time()))
with open(self.train_dataset_path, 'rb') as f:
self.training_dataset = pickle.load(f)
with open(self.valid_dataset_path, 'rb') as f:
self.validation_dataset = pickle.load(f)
self.train_loader = DataLoader(
self.training_dataset,
batch_size=self.batch_size,
num_workers=0,
pin_memory=True,
shuffle=True,
drop_last=True,
)
self.valid_loader = DataLoader(
self.validation_dataset,
batch_size=self.valid_batch_size,
num_workers=0,
pin_memory=True,
shuffle=False,
drop_last=False,
)
start_time = time.time()
# Start training
print('Start training...')
print ('cur time: %.6f' %(time.time()))
self.iters_per_epoch = len(self.train_loader)
print (self.iters_per_epoch)
for epoch in range(1, self.epoch + 1):
self.model.train()
total_training_loss = 0
total_split_loss = np.zeros(4)
for batch_idx, batch in enumerate(self.train_loader):
# Parse batch data
input_tensor = batch[0].to(self.device)
onset_prob = batch[1][:, 0].float().to(self.device)
offset_prob = batch[1][:, 1].float().to(self.device)
pitch_octave = batch[1][:, 2].long().to(self.device)
pitch_class = batch[1][:, 3].long().to(self.device)
loss = 0
self.optimizer.zero_grad()
onset_logits, offset_logits, pitch_octave_logits, pitch_class_logits = self.model(input_tensor)
split_train_loss0 = self.onset_criterion(onset_logits, onset_prob)
split_train_loss1 = self.offset_criterion(offset_logits, offset_prob)
split_train_loss2 = self.octave_criterion(pitch_octave_logits, pitch_octave)
split_train_loss3 = self.pitch_criterion(pitch_class_logits, pitch_class)
total_split_loss[0] = total_split_loss[0] + split_train_loss0.item()
total_split_loss[1] = total_split_loss[1] + split_train_loss1.item()
total_split_loss[2] = total_split_loss[2] + split_train_loss2.item()
total_split_loss[3] = total_split_loss[3] + split_train_loss3.item()
loss = split_train_loss0 + split_train_loss1 + split_train_loss2 + split_train_loss3
loss.backward()
self.optimizer.step()
total_training_loss += loss.item()
if batch_idx % 5000 == 0 and batch_idx != 0:
print (epoch, batch_idx, "time:", time.time()-start_time, "loss:", total_training_loss / (batch_idx+1))
if epoch % self.save_every_epoch == 0:
# Perform validation
self.model.eval()
with torch.no_grad():
total_valid_loss = 0
split_val_loss = np.zeros(6)
for batch_idx, batch in enumerate(self.valid_loader):
input_tensor = batch[0].to(self.device)
onset_prob = batch[1][:, 0].float().to(self.device)
offset_prob = batch[1][:, 1].float().to(self.device)
pitch_octave = batch[1][:, 2].long().to(self.device)
pitch_class = batch[1][:, 3].long().to(self.device)
onset_logits, offset_logits, pitch_octave_logits, pitch_class_logits = self.model(input_tensor)
split_val_loss0 = self.onset_criterion(onset_logits, onset_prob)
split_val_loss1 = self.offset_criterion(offset_logits, offset_prob)
split_val_loss2 = self.octave_criterion(pitch_octave_logits, pitch_octave)
split_val_loss3 = self.pitch_criterion(pitch_class_logits, pitch_class)
split_val_loss[0] = split_val_loss[0] + split_val_loss0.item()
split_val_loss[1] = split_val_loss[1] + split_val_loss1.item()
split_val_loss[2] = split_val_loss[2] + split_val_loss2.item()
split_val_loss[3] = split_val_loss[3] + split_val_loss3.item()
# Calculate loss
loss = split_val_loss0 + split_val_loss1 + split_val_loss2 + split_val_loss3
total_valid_loss += loss.item()
# Save model
save_dict = self.model.state_dict()
target_model_path = Path(self.model_dir) / (training_args['save_prefix']+'_{}'.format(epoch))
torch.save(save_dict, target_model_path)
# Epoch statistics
print(
'| Epoch [{:4d}/{:4d}] Train Loss {:.4f} Valid Loss {:.4f} Time {:.1f}'.format(
epoch,
self.epoch,
total_training_loss / len(self.train_loader),
total_valid_loss / len(self.valid_loader),
time.time()-start_time))
print('split train loss: onset {:.4f} offset {:.4f} pitch octave {:.4f} pitch class {:.4f}'.format(
total_split_loss[0]/len(self.train_loader),
total_split_loss[1]/len(self.train_loader),
total_split_loss[2]/len(self.train_loader),
total_split_loss[3]/len(self.train_loader)
)
)
print('split val loss: onset {:.4f} offset {:.4f} pitch octave {:.4f} pitch class {:.4f}'.format(
split_val_loss[0]/len(self.valid_loader),
split_val_loss[1]/len(self.valid_loader),
split_val_loss[2]/len(self.valid_loader),
split_val_loss[3]/len(self.valid_loader)
)
)
print('Training done in {:.1f} minutes.'.format((time.time()-start_time)/60))
def _parse_frame_info(self, frame_info, onset_thres, offset_thres):
"""Parse frame info [(onset_probs, offset_probs, pitch_class)...] into desired label format."""
result = []
current_onset = None
pitch_counter = []
last_onset = 0.0
onset_seq = np.array([frame_info[i][0] for i in range(len(frame_info))])
local_max_size = 3
current_time = 0.0
onset_seq_length = len(onset_seq)
for i in range(len(frame_info)):
current_time = FRAME_LENGTH*i
info = frame_info[i]
backward_frames = i - local_max_size
if backward_frames < 0:
backward_frames = 0
forward_frames = i + local_max_size + 1
if forward_frames > onset_seq_length - 1:
forward_frames = onset_seq_length - 1
# local max and more than threshold
if info[0] >= onset_thres and onset_seq[i] == np.amax(onset_seq[backward_frames : forward_frames]):
if current_onset is None:
current_onset = current_time
last_onset = info[0] - onset_thres
else:
if len(pitch_counter) > 0:
result.append([current_onset, current_time, max(set(pitch_counter), key=pitch_counter.count) + 36])
current_onset = current_time
last_onset = info[0] - onset_thres
pitch_counter = []
elif info[1] >= offset_thres: # If is offset
if current_onset is not None:
if len(pitch_counter) > 0:
result.append([current_onset, current_time, max(set(pitch_counter), key=pitch_counter.count) + 36])
current_onset = None
pitch_counter = []
# If current_onset exist, add count for the pitch
if current_onset is not None:
final_pitch = int(info[2]* 12 + info[3])
if info[2] != 4 and info[3] != 12:
# if final_pitch != 60:
pitch_counter.append(final_pitch)
if current_onset is not None:
if len(pitch_counter) > 0:
result.append([current_onset, current_time, max(set(pitch_counter), key=pitch_counter.count) + 36])
current_onset = None
return result
def predict(self, test_dataset, results={}, onset_thres=0.1, offset_thres=0.5):
"""Predict results for a given test dataset."""
# Setup params and dataloader
batch_size = 500
test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
pin_memory=False,
shuffle=False,
drop_last=False,
)
# Start predicting
my_sm = torch.nn.Softmax(dim=0)
self.model.eval()
with torch.no_grad():
song_frames_table = {}
raw_data = {}
for batch_idx, batch in enumerate(tqdm(test_loader)):
# Parse batch data
input_tensor = batch[0].to(self.device)
song_ids = batch[1]
result_tuple = self.model(input_tensor)
onset_logits = result_tuple[0]
offset_logits = result_tuple[1]
pitch_octave_logits = result_tuple[2]
pitch_class_logits = result_tuple[3]
onset_probs, offset_probs = torch.sigmoid(onset_logits).cpu(), torch.sigmoid(offset_logits).cpu()
pitch_octave_logits, pitch_class_logits = pitch_octave_logits.cpu(), pitch_class_logits.cpu()
# print (pitch_octave_logits)
# Collect frames for corresponding songs
for bid, song_id in enumerate(song_ids):
frame_info = (onset_probs[bid], offset_probs[bid], torch.argmax(pitch_octave_logits[bid]).item()
, torch.argmax(pitch_class_logits[bid]).item())
song_frames_table.setdefault(song_id, [])
song_frames_table[song_id].append(frame_info)
# Parse frame info into output format for every song
for song_id, frame_info in song_frames_table.items():
results[song_id] = self._parse_frame_info(frame_info, onset_thres=onset_thres, offset_thres=offset_thres)
return results