Skip to content

Latest commit

 

History

History
112 lines (101 loc) · 5 KB

README.md

File metadata and controls

112 lines (101 loc) · 5 KB

Regress, Don’t Guess – A Regression-like Loss on Number Tokens for Language Models

ntl-image.jpg

Introducing "Number Token Loss" (NTL) for language models to improve numerical reasoning by using regression-based loss functions that account for the proximity of numbers, achieving better performance on math tasks without increasing computational overhead.

Resources

Find our paper here and the poster of the NeurIPS 2024 MathAI workshop here

Setup

Via Python

  • Requires Python 3.9 or higher
  • Install the required packages
    conda create -n ntl python=3.9
    conda activate ntl
    pip install -r requirements.txt
    pip install -e .
  • Log into wandb in the terminal
    wandb login
    
    Enter you username and auth token (wandb.ai/auth)

Via Docker

  • Start a docker container with the transformers image
    docker run --name container_name --gpus <device_number> -v /home/students/code/<name>/path_to_code:/app/data -it huggingface/transformers-pytorch-gpu
  • Inside the container, interactively set the transformers library to version 4.42.4 and install wandb and hydra
    pip install transformers==4.42.4
    pip install wandb
    pip install hydra-core
  • Log into wandb in the terminal
    wandb login
    
    Enter you username and auth token (wandb.ai/auth)

Training

  • The main script is src.run_language_modeling.py.
    • The Arguments are configured via Hydra (Yadan, Omry. Hydra - A framework for elegantly configuring complex applications. Github, 2019. Available at: https://github.com/facebookresearch/hydra.)
    • Therefore the script can be called via
      python src/ntl/run_language_modeling.py dataset_args=<gsm8k or mathematics_dataset, default mathematics_dataset>
                                          model_args=<rt, rt_ntl, vanilla_t5, vanilla_t5_ntl, xval>
                                          training_args=<eval or train>
    • You can override the default config via the command line, e.g.
      python src/ntl/run_language_modeling.py model_args=vanilla_t5 training_args=train training_args.per_device_train_batch_size=8
      or override them in the config/run_specific_config/config.yaml file.
    • For debugging, you can use the config/run_specific_config/debug_config.yaml file via
      python src/ntl/run_language_modeling.py model_args=vanilla_t5 training_args=train run_specific_config@_global_=debug_config
    • For running in nohup mode, use
      nohup python src/ntl/run_language_modeling.py dataset_args=mathematics_dataset model_args=vanilla_t5 training_args=train >logs/log_<run_name>.txt &

Reproduce our results

  1. Get the data from https://console.cloud.google.com/storage/browser/mathematics-dataset;tab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false
  2. Execute create_data_splits.py
  3. Put the .txt files under data/mathematics_dataset-v1.0/
  4. Execute the run_language_modeling.py script with the following arguments:
  • Standard T5:
    python src/ntl/run_language_modeling.py model_args=vanilla_t5 +training_args.max_steps=1050000
    
  • Standard T5 + NTL-MSE:
    python src/ntl/run_language_modeling.py model_args=vanilla_t5_ntl +training_args.max_steps=1050000
    
  • Standard T5 + NTL-WAS:
    python src/ntl/run_language_modeling.py model_args=vanilla_t5_ntl  model_args.number_token_loss_with_wasserstein=true +training_args.max_steps=1050000
    
  • RT:
    python src/ntl/run_language_modeling.py model_args=rt +training_args.max_steps=1050000
    
  • RT + NTL-MSE:
    python src/ntl/run_language_modeling.py model_args=rt_ntl +training_args.max_steps=1050000
    
  • xVal:
    python src/nlt/xval/train.py
    

For evaluating instead of training a model, add those two parameters to the respective python command: training_args=eval model_args.model_name_or_path=<path to checkpoint file> e.g for Standard T5 + NTL-WAS:

python src/ntl/run_language_modeling.py model_args=vanilla_t5_ntl  model_args.number_token_loss_with_wasserstein=true training_args=eval model_args.model_name_or_path=<path to checkpoint file>

Citation

If you use this work, please cite:

@inproceedings{zausinger24regress,
  title={Regress, Don't Guess--A Regression-like Loss on Number Tokens for Language Models},
  author={Zausinger, Jonas and Pennig, Lars and Chlodny, Kacper and Limbach, Vincent and Ketteler, Anna and Prein, Thorben and Singh, Vishwa Mohan and Danziger, Michael and Born, Jannis},
  booktitle={The 4th Workshop on Mathematical Reasoning and AI at NeurIPS'24},
  year={2024}
}