diff --git a/demos/multi_camera/demo.py b/demos/multi_camera/demo.py index fda78a0f..d34ab70a 100644 --- a/demos/multi_camera/demo.py +++ b/demos/multi_camera/demo.py @@ -1,7 +1,7 @@ import argparse import os import pickle -import sys +from logging import warning import cv2 import numpy as np @@ -192,36 +192,36 @@ def run(): "--confidence-threshold", type=float, help="Confidence threshold of detections", - default=0.15, + default=0.2, ) parser.add_argument( "--iou-threshold", type=float, - default=0.6, - help="Max IoU to consider when matching detections and tracked objects", + default=0.5, + help="Max '1-IoU' to consider when matching detections and tracked objects", ) parser.add_argument( "--distance-threshold", type=float, - default=0.1, + default=0.15, help="Maximum distance that two tracked objects of different videos can have in order to match", ) parser.add_argument( "--max-votes-grow", type=int, - default=5, + default=4, help="Amount of votes we need before increasing the size of a cluster", ) parser.add_argument( "--max-votes-split", type=int, - default=5, + default=15, help="Amount of votes we need before decreasing the size of a cluster", ) parser.add_argument( "--memory", type=int, - default=3, + default=2, help="How long into the past should we consider past clusters", ) parser.add_argument( @@ -233,13 +233,13 @@ def run(): parser.add_argument( "--initialization-delay", type=float, - default=3, + default=6, help="Min detections needed to start the tracked object", ) parser.add_argument( "--hit-counter-max", type=int, - default=30, + default=20, help="Max iteration the tracked object is kept after when there are no detections", ) parser.add_argument( @@ -353,8 +353,22 @@ def mask_generator(frame): if args.use_motion_estimator_footage: motion_estimators[path].transformation = initial_transformations[path] - # now initialize the videos and their trackers + # initialize the reference if it exists + reference = {"video": None, "image": None, "motion_estimator": None} image_reference = None + if not first_video_is_reference: + # if failing to read it as an image, try to read it as a video + image_reference = cv2.imread(args.reference) + reference["image"] = image_reference + if image_reference is None: + video = Video(input_path=path) + image_reference = next(video.__iter__()) + reference["video"] = video + reference["motion_estimator"] = motion_estimator_reference + + # now initialize the videos and their trackers + fps = None + total_frames = None for path in args.files: extension = os.path.splitext(path)[1] if args.output_name is None: @@ -363,8 +377,28 @@ def mask_generator(frame): output_path = args.output_name video = Video(input_path=path, output_path=output_path) + + # check that the fps + if fps is None: + fps = video.output_fps + total_frames = int(video.video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) + else: + current_fps = video.output_fps + current_total_frames = int( + video.video_capture.get(cv2.CAP_PROP_FRAME_COUNT) + ) + if current_fps != fps: + warning( + f"{args.files[0]} is at {fps} FPS, but {path} is at {current_fps} FPS." + ) + if total_frames != current_total_frames: + warning( + f"{args.files[0]} has {total_frames} frames, but {path} has {current_total_frames} frames." + ) if image_reference is None: image_reference = next(video.__iter__()) + else: + next(video.__iter__()) videos[path] = video trackers[path] = Tracker( distance_function="iou", @@ -376,22 +410,20 @@ def mask_generator(frame): ) tracked_objects[path] = [] - reference = {"video": None, "image": None, "motion_estimator": None} - if not first_video_is_reference: - # if failing to read it as an image, try to read it as a video - image_reference = cv2.imread(args.reference) - reference["image"] = image_reference - if image_reference is None: - video = Video(input_path=path) - image_reference = next(video.__iter__()) - reference["video"] = video - reference["motion_estimator"] = motion_estimator_reference - - height_reference = image_reference.shape[0] big_black_frame = np.zeros( - tuple([args.resolution[1] * 2, args.resolution[0] * 2, 3]), dtype=np.uint8 + tuple( + [ + args.resolution[1] + * ((len(args.files) + (not first_video_is_reference) + 1) // 2), + args.resolution[0] * 2, + 3, + ] + ), + dtype=np.uint8, ) + height_reference = image_reference.shape[0] + def normalized_foot_distance(tracker1, tracker2): return ( np.linalg.norm(get_absolute_feet(tracker1) - get_absolute_feet(tracker2)) diff --git a/norfair/multi_camera.py b/norfair/multi_camera.py index ef70dd90..36545a7e 100644 --- a/norfair/multi_camera.py +++ b/norfair/multi_camera.py @@ -424,7 +424,8 @@ def update(self, trackers_by_camera): if cluster.grow_votes == self.max_votes_grow: # if the votes to grow are enough, then we will expand our cluster # we might need to steal ids from other clusters, so first we will remove those from the others - cluster.grow_votes -= 1 + cluster.grow_votes = 0 + cluster.split_votes = 0 other_cluster_number = 0 while other_cluster_number < len(self.clusters): @@ -481,7 +482,8 @@ def update(self, trackers_by_camera): # if we have enough votes to split our cluster # we update the old cluster with the information of the biggest current cluster inside # for the other current clusters that intersect it, we create new clusters - cluster.split_votes -= 1 + cluster.split_votes = 0 + cluster.grow_votes = 0 other_current_cluster_number = 0 while other_current_cluster_number < len(current_clusters):