-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_extractor.py
372 lines (315 loc) · 18.3 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import sys, re, os, nltk
from nltk import word_tokenize
from nltk.corpus import words, wordnet
from nltk.tokenize import RegexpTokenizer, sent_tokenize
from textstat.textstat import textstat
from nltk.stem.wordnet import WordNetLemmatizer
import language_check
tokenizer = RegexpTokenizer(r'\w+')
output_list = []
wordset = set(words.words())
lmtzr = WordNetLemmatizer()
stopwords = nltk.corpus.stopwords.words('english')
tool = language_check.LanguageTool('en-US')
relevant_trigrams = [('IN', 'DT', 'NN'), ('VB', 'JJ', 'NNS'), ('VBZ', 'JJ', 'NNS'), ('PRP', 'TO', 'VB'),
('VB', 'DT', 'NN'), ('DT', 'JJ', 'NNS'), ('CC', 'JJ', 'NN'), ('CC', 'PRP', 'VBZ'), ('.', 'NN', 'VBP'),
('TO', 'VB', 'IN'), ('DT', 'NN', 'VBP'), ('DT', 'NNS', 'VBP'), ('PRP$', 'NN', 'CC'), ('NN', '.', 'WRB'),
('JJ', 'NN', 'CC'), ('VBP', 'RB', 'JJ'), ('TO', 'VB', 'JJR'), ('VB', 'NN', 'IN'), ('VBN', 'TO', 'VB'),
('JJ', 'IN', 'PRP'), ('NNS', '.', 'IN'), ('PRP', 'VBP', 'JJ'), ('IN', 'NN', '.'), ('RB', ',', 'NN'),
(',', 'DT', 'NNS'), ('NN', 'CC', 'TO'), ('NNS', 'RB', 'VBP'), ('JJ', 'NNS', ','), ('NN', '.', 'IN'),
(',', 'IN', 'NNS'), ('NN', 'IN', 'NNS'), ('VBZ', 'DT', 'JJ'), ('JJ', 'VBP', 'RB'), ('VBP', 'DT', 'NN'),
(',', 'PRP', 'RB'), ('JJ', 'NN', 'IN'), ('NNS', 'VBP', 'JJ'), ('VBZ', 'DT', 'NN'), ('MD', 'VB', 'PRP'),
('DT', 'NNS', '.'), ('IN', 'PRP', 'VBZ'), ('NN', 'TO', 'VB'), ('VBZ', 'VBN', 'TO'), ('NN', '.', 'NNS'),
('PRP', 'MD', 'VB'), ('PRP', 'VBD', 'DT'), ('IN', 'PRP', 'TO'), ('VB', 'IN', 'IN'), (',', 'IN', 'PRP'),
('RB', 'VB', 'NNS'), ('VBP', 'RB', 'VB'), ('RB', 'VB', 'NN'), ('.', 'DT', 'NN'), ('DT', 'NN', 'VBZ'),
('NN', 'IN', 'DT'), ('VBP', 'DT', 'JJ'), ('VBG', 'JJ', 'TO'), ('NNS', 'VBP', 'NN'), ('NNS', ',', 'NN'),
('NNS', 'IN', 'NN'), ('NN', 'IN', 'NN'), ('VBP', 'JJR', 'NN'), ('VBD', 'TO', 'VB'), ('VB', 'JJ', 'VBZ'),
('JJR', 'NN', 'CC'), ('NNS', '.', 'RB'), ('NNS', 'WDT', 'VBP'), ('VBG', 'PRP', 'TO'), ('NN', ',', 'JJ'),
('VBP', 'JJ', 'NN'), ('NN', ',', 'CD'), ('IN', 'PRP', 'RB'), ('MD', 'VB', 'TO'), (',', 'PRP', 'MD'),
('IN', 'CD', 'NNS'), (',', 'NN', 'VBP'), ('DT', 'NN', 'IN'), ('PRP', 'VBD', 'IN'), ('JJ', 'NN', 'MD'),
('NN', 'IN', 'PRP$'), ('TO', 'NNS', 'MD'), ('NN', '.', 'DT'), ('NNS', 'JJ', 'IN'), ('NNS', 'IN', 'DT'),
('.', 'DT', 'JJ'), ('PRP', 'NNS', ','), ('NNS', ',', 'EX'), ('IN', 'NN', ','), ('NN', 'MD', 'VB'),
('PRP', 'RB', '.'), ('NNS', 'MD', 'VB'), ('JJ', '.', 'RB'), (',', 'PRP', 'VBD'), ('NNS', 'TO', 'VB'),
('NN', 'VBZ', 'PRP'), ('NNS', 'IN', 'PRP'), ('VBD', 'DT', 'JJ'), ('WP', 'MD', 'VB'), ('IN', 'VBG', 'CC'),
('IN', 'NN', 'IN'), ('JJ', ',', 'VBG'), ('MD', 'VB', 'NNS'), ('CC', 'WRB', 'PRP'), ('DT', 'NNS', 'IN'),
('WRB', 'PRP', 'VBP'), ('DT', 'NNS', 'VBD'), ('RB', 'VB', 'IN'), ('NN', 'DT', 'NN'), ('DT', 'NN', '.'),
('CC', 'VBG', 'IN'), ('VBP', 'JJR', 'NNS'), ('.', 'IN', 'IN'), ('IN', 'PRP$', 'NN'), ('VB', 'PRP$', 'NN'),
('.', 'DT', 'MD'), ('RB', ',', 'PRP'), ('IN', 'DT', 'JJ'), ('.', 'IN', 'NN'), (',', 'PRP', 'VBP')]
relevant_trigram_set = set(relevant_trigrams)
transition_words = [('and', 'then'), ('besides'), ('equally', 'important'), ('finally'), ('further'),
('furthermore'), ('nor'), ('next'), ('lastly'), ('what\'s', 'more'), ('moreover'), ('in', 'addition'),
('first'), ('second'), ('third'), ('fourth'), ('whereas'), ('yet'), ('on', 'the', 'other', 'hand'), ('however'),
('nevertheless'), ('on', 'the', 'contrary'), ('by', 'comparison'), ('compared', 'to'), ('up', 'against'),
('balanced', 'against'), ('vis', 'a', 'vis'), ('although'), ('conversely'), ('meanwhile'), ('after', 'all'),
('in', 'contrast'), ('although', 'this', 'may', 'be', 'true'), ('because'), ('since'), ('for', 'the', 'same', 'reason'),
('obviously'), ('evidently'), ('indeed'), ('in', 'fact'), ('in', 'any', 'case'), ('that', 'is'), ('still'), ('in', 'spite', 'of'),
('despite'), ('of', 'course'), ('once', 'in', 'a', 'while'), ('sometimes'), ('immediately'), ('thereafter'), ('soon'),
('after', 'a', 'few', 'hours'), ('then'), ('later'), ('previously'), ('formerly'), ('in', 'brief'), ('as', 'I', 'have', 'said'),
('as', 'I', 'have', 'noted'), ('as', 'has', 'been', 'noted'), ('definitely'), ('extremely'), ('obviously'), ('absolutely'),
('positively'), ('naturally'), ('surprisingly'), ('always'), ('forever'), ('perennially'), ('eternally'), ('never'),
('emphatically'), ('unquestionably'), ('without', 'a', 'doubt'), ('certainly'), ('undeniably'), ('without', 'reservation'),
('following', 'this'), ('at', 'this', 'time'), ('now'), ('at', 'this', 'point'), ('afterward'), ('subsequently'), ('consequently'),
('previously'), ('before', 'this'), ('simultaneously'), ('concurrently'), ('thus'), ('therefore'), ('hence'), ('for', 'example'),
('for', 'instance'), ('in', 'this', 'case'), ('in', 'another', 'case'), ('on', 'this', 'occasion'), ('in', 'this', 'situation'),
('take', 'the', 'case', 'of'), ('to', 'demonstrate'), ('to', 'illustrate'), ('as', 'an', 'illustration'), ('on', 'the', 'whole'),
('summing', 'up'), ('to', 'conclude'), ('in', 'conclusion'), ('as', 'I', 'have', 'shown'), ('as', 'I', 'have', 'said'),
('accordingly'), ('as', 'a', 'result')]
transitions_set = set(transition_words)
### Import your corpus here in whatever format you have it
with open(os.path.expanduser("filename.tsv"),encoding='utf-8') as input_file:
for line in input_file:
# Preprocessing
line = line.strip()
Sex, Age, Language, Level, ID, Score, Essay = line.split('\t')
essay = Essay
# With punctuation, not lowered
tokens = word_tokenize(essay)
tagged = nltk.pos_tag(tokens)
num_sents = len(sent_tokenize(essay))
# With punctuation, lowered
essay_low = Essay.strip().lower()
tokens_low = word_tokenize(essay_low)
tagged_low = nltk.pos_tag(tokens_low)
# Without punctuation, not lowered
tokens_np = tokenizer.tokenize(essay)
num_tokens = len(tokens_np)
# Without punctuation, lowered
tokens_low_np = tokenizer.tokenize(essay_low)
types = set(tokens_low_np)
num_types = len(types)
# Content and function words
content_tokens = [w for w in tokens_np if w not in stopwords]
content_types = [w for w in types if w not in stopwords]
function_tokens = [w for w in tokens_np if w in stopwords]
function_types = [w for w in types if w in stopwords]
# Word frequency ranking extractors
rankings=[]
rank_file = open(os.path.expanduser("~/Desktop/word_rank.tsv"),encoding='utf-8')
for line in rank_file:
rank, token, pos, freq, disp = line.split()
for word in content_types:
if word == token:
rankings.append(int(rank))
rank_total = sum(rankings)
try:
rank_avg = round(rank_total/len(rankings),4)
except ZeroDivisionError:
rank_avg = 0
# Length feature extractor
len_words = []
for word in tokens_np:
len_words.append(len(word))
avg_len_word = round(sum(len_words) / num_tokens, 4)
# Sentence density feature extractor
sent_density = round(num_sents / num_tokens * 100, 2)
# Lexical diversity feature extractor
ttr = round(num_types / num_tokens * 100, 2)
# English words feature extractor
english_types = []
for word in types:
if word in wordset:
english_types.append(word)
english_usage = len(english_types)
# Percent of relevant trigrams in essay
a, b = zip(*tagged)
trigram_set = set(nltk.trigrams(b))
found_trigrams = relevant_trigram_set & trigram_set
pct_rel_trigrams = round(len(found_trigrams) / len(relevant_trigram_set) * 100, 2)
found_transitions = transitions_set & types
pct_transitions = round(len(found_transitions) / len(transitions_set), 4)
for word in found_transitions:
transition_word = word
matches = tool.check(essay)
grammar_chk = round(len(matches)/len(tokens_np), 5)
rules =[]
for match in matches:
match_list = list(match)
match_rule = match_list[4]
rules.append(match_rule)
for rule in set(rules):
grammar_error = rule
## TAACO features
# n_lemma_types
lemma_types_list = []
for word in types:
lemma_types = lmtzr.lemmatize(word)
lemma_types_list.append(lemma_types)
bigram_lemma_types = nltk.bigrams(lemma_types_list)
trigram_lemma_types = nltk.trigrams(lemma_types_list)
nlemma_types = len(lemma_types_list)
n_bigram_lemma_types = len(list(bigram_lemma_types))
n_trigram_lemma_types = len(list(trigram_lemma_types))
# n_lemmas
lemma_tokens_list = []
for word in tokens_np:
lemma_tokens = lmtzr.lemmatize(word)
lemma_tokens_list.append(lemma_tokens)
bigram_lemmas = nltk.ngrams(lemma_tokens_list,2)
trigram_lemmas = nltk.ngrams(lemma_tokens_list,3)
nlemmas = len(lemma_tokens_list)
n_bigram_lemmas = len(list(bigram_lemmas))
n_trigram_lemmas = len(list(trigram_lemmas))
# content_words
ncontent_tokens = len(content_tokens)
ncontent_types = len(content_types)
try:
content_ttr = round(ncontent_types/ncontent_tokens,4)
except ZeroDivisionError:
content_ttr = 1
# function_words
nfunction_tokens = len(function_tokens)
nfunction_types = len(function_types)
try:
function_ttr = round(nfunction_types/nfunction_tokens,4)
except ZeroDivisionError:
function_ttr = 1
# noun_ttr
nouns = []
for word, tag in tagged:
if re.search(r'\b(NN(S|P|PS))\b', tag):
nouns.append(word)
try:
noun_ttr = round(len(set(nouns))/len(nouns),4)
except ZeroDivisionError:
noun_ttr = 0
# determiners
det = len(re.findall(r'\b(DT)\b', str(tagged), flags=re.I))
determiners = round(det/len(tokens_np), 5)
# conjunctions
conj = len(re.findall(r'\b(and|but)\W+(CC)\b', str(tagged), flags=re.I))
conjunctions = round(conj/len(tokens_np), 5)
# pronouns
prn = len(re.findall(r'\b(he|she|it|his|hers|him|her|they|them|their)\b', str(tokens), flags=re.I))
prn_density = round(prn/len(tokens_np), 5)
try:
prn_noun_ratio = round(prn/len(nouns), 2)
except ZeroDivisionError:
prn_noun_ratio = 0
## Readability features
num_syllab = textstat.syllable_count(essay)
avg_len_sent = textstat.avg_sentence_length(essay)
# avg_sent_per_word = textstat.avg_sentence_per_word(essay)
# num_polysyllab = textstat.polysyllabcount(essay)
num_chars = textstat.char_count(essay, ignore_spaces=True)
# avg_syllab_per_word = textstat.avg_syllables_per_word(essay)
fre = textstat.flesch_reading_ease(essay)
fkg = textstat.flesch_kincaid_grade(essay)
cli = textstat.coleman_liau_index(essay)
ari = textstat.automated_readability_index(essay)
dcrs = textstat.dale_chall_readability_score(essay)
dw = textstat.difficult_words(essay)
lwf = textstat.linsear_write_formula(essay)
gf = textstat.gunning_fog(essay)
## Stages of negation (features to improve validity for AES in ELL contexts)
stage1a = len(re.findall(r'\b(no)\W+(DT)\W{6}\w+\W+(VB|VBG|VBD|VBZ|VBP|VBN|MD)\b', str(tagged), flags=re.I))
stage1b = len(re.findall(r'\b(NN(S|P|PS)|PRP|VB(G|N)|MD)\W{6}(not)\W+(RB)\W+\w+\W+(VB(G|N))\b', str(tagged_low), flags=re.I))
stage1c = len(re.findall(r'\b(not)\W+(RB)\W{6}\w+\W+(VBD|VBZ|VBP|MD)\b', str(tagged_low), flags=re.I))
stage2a = len(re.findall(r'\b((do)\W+\w+\W+(not|n\'t)\W+(RB)|(dont)\W{6}\w+\W+)\W{6}\w+\W+(VBG|VBD|VBZ|VBN|MD)\b', str(tagged), flags=re.I))
stage2b = len(re.findall(r'\b(he|she|it|him|her)\W+\w+\W{6}((do)\W+\w+\W+(not|n\'t)\W+(RB)|(dont))\b', str(tagged), flags=re.I))
stage2c = len(re.findall(r'\b(i|you|we|they)\W+\w+\W{6}((does)\W+\w+\W{6}(not|n\'t)|doesnt)\b', str(tagged), flags=re.I))
stage3a = len(re.findall(r'\b(d(o|oes|id)|ha(ve|s|d)|be|a(m|re)|is|w(as|ere))\W+\w+\W{6}(((do)\W+\w+\W+(not|n\'t))\W+(RB)|(dont))\b', str(tagged), flags=re.I))
stage3b = len(re.findall(r'\b(ha(ve|s|d)|be|a(m|re)|is|w(as|ere))\W+\w+\W{6}(not|n\'t)\b', str(tagged), flags=re.I))
stage3c = len(re.findall(r'\b(MD)\W+((do)\W+\w+\W+(not|n\'t)|dont|not|n\'t)\b', str(tagged), flags=re.I))
stage4a = len(re.findall(r'\b(i|you|we|they)\W+\w+\W{6}((do|did)\W+\w+\W+(not|n\'t)|dont|didnt)\W+(RB|VBP)\W+\w+\W+(VB)\b', str(tagged), flags=re.I))
stage4b = len(re.findall(r'\b(i|you|we|they)\W+\w+\W{6}((did)\W+\w+\W+(not|n\'t)|didnt)\W+\w+\W{6}\w+\W+(VBD)\b', str(tagged), flags=re.I))
stage4c = len(re.findall(r'\b(he|she|it)\W+(\w+|NNP)\W{6}((does)\W+\w+\W{6}(not|n\'t)|doesnt)\W+\w+\W{6}\w+\W+(VB|VBZ)\b', str(tagged), flags=re.I))
# Original stages
stage1 = stage1a+stage1b+stage1c
stage2 = stage2a+stage2b+stage2c
stage3 = stage3a+stage3b+stage3c
stage4 = stage4a+stage4b+stage4c
neg_usage = stage1+stage2+stage3+stage4
try:
s1a = round(stage1a*100/neg_usage,2)
s1b = round(stage1b*100/neg_usage,2)
s1c = round(stage1c*100/neg_usage,2)
s2a = round(stage2a*100/neg_usage,2)
s2b = round(stage2b*100/neg_usage,2)
s2c = round(stage2c*100/neg_usage,2)
s3a = round(stage3a*100/neg_usage,2)
s3b = round(stage3b*100/neg_usage,2)
s3c = round(stage3c*100/neg_usage,2)
s4a = round(stage4a*100/neg_usage,2)
s4b = round(stage4b*100/neg_usage,2)
s4c = round(stage4c*100/neg_usage,2)
except ZeroDivisionError:
s1a=0
s1b=0
s1c=0
s2a=0
s2b=0
s2c=0
s3a=0
s3b=0
s3c=0
s4a=0
s4b=0
s4c=0
try:
s1 = s1a+s1b+s1c
s2 = s2a+s2b+s2c
s3 = s3a+s3b+s3c
s4 = s4a+s4b+s4c
except ZeroDivisionError:
s1=0.0
s2=0.0
s3=0.0
s4=0.0
# New stages
stage1_new = stage1a+stage2b+stage2a
stage2_new = stage1b+stage4a
stage3_new = stage3c+stage3b+stage4b
neg_usage_new = stage1_new+stage2_new+stage3_new
try:
s1a_new = round(stage1a*100/neg_usage_new,2)
s1b_new = round(stage1b*100/neg_usage_new,2)
s1c_new = round(stage1c*100/neg_usage_new,2)
s2a_new = round(stage2a*100/neg_usage_new,2)
s2b_new = round(stage2b*100/neg_usage_new,2)
s3b_new = round(stage3b*100/neg_usage_new,2)
s3c_new = round(stage3c*100/neg_usage_new,2)
s4a_new = round(stage4a*100/neg_usage_new,2)
s4b_new = round(stage4b*100/neg_usage_new,2)
s4c_new = round(stage4c*100/neg_usage_new,2)
except ZeroDivisionError:
s1a_new=0
s1b_new=0
s1c_new=0
s2a_new=0
s2b_new=0
s3b_new=0
s3c_new=0
s4a_new=0
s4b_new=0
s4c_new=0
try:
s1_new = s1a_new+s2b_new+s2a_new
s2_new = s1b_new+s4a_new
s3_new = s3c_new+s3b_new+s4b_new
except ZeroDivisionError:
s1_new=0.0
s2_new=0.0
s3_new=0.0
# If you add to the features extracted, add them to the output list
output_list.append([Sex, Age, Language, Level, ID, Score, rank_total, rank_avg, pct_transitions, transition_word,
grammar_chk, grammar_error, determiners, conjunctions, prn_density, prn_noun_ratio,
n_trigram_lemma_types, n_bigram_lemma_types, nlemma_types, nlemmas, n_bigram_lemmas, n_trigram_lemmas,
ncontent_tokens, ncontent_types, content_ttr, nfunction_tokens, nfunction_types, function_ttr, noun_ttr,
neg_usage, s1a, s1b, s1c, s2a, s2b, s2c, s3a, s3b, s3c, s4a, s4b, s4c, s1, s2, s3, s4,
neg_usage_new, s1a_new, s1b_new, s1c_new, s2a_new, s2b_new, s3b_new, s3c_new, s4a_new, s4b_new, s4c_new, s1_new, s2_new, s3_new,
fre, fkg, cli, ari, dcrs, dw, lwf, gf, num_tokens, num_types,
avg_len_word, num_sents, avg_len_sent, num_syllab, num_chars, sent_density, ttr, english_usage, pct_rel_trigrams, Essay])
# Then iterate over output_list and write it to an output file.
with open('output_file.tsv', 'w', encoding='utf-8') as output_file:
# then write the column names...
print('Sex', 'Age', 'Language', 'Level', 'ID', 'Score', 'rank_total', 'rank_avg', 'pct_transitions', 'transition_word',
'grammar_chk', 'grammar_error', 'determiners', 'conjunctions', 'prn_density', 'prn_noun_ratio',
'n_trigram_lemma_types', 'n_bigram_lemma_types', 'nlemma_types', 'nlemmas', 'n_bigram_lemmas', 'n_trigram_lemmas',
'ncontent_tokens', 'ncontent_types', 'content_ttr', 'nfunction_tokens', 'nfunction_types', 'function_ttr', 'noun_ttr',
'neg_usage', 's1a', 's1b', 's1c', 's2a', 's2b', 's2c', 's3a', 's3b', 's3c', 's4a', 's4b', 's4c','s1', 's2', 's3', 's4',
'neg_usage_new', 's1a_new', 's1b_new', 's1c_new', 's2a_new', 's2b_new', 's3b_new', 's3c_new', 's4a_new', 's4b_new', 's4c_new','s1_new', 's2_new', 's3_new',
'fre', 'fkg', 'cli', 'ari', 'dcrs', 'dw', 'lwf', 'gf', 'num_tokens', 'num_types',
'avg_len_word', 'num_sents', 'avg_len_sent', 'num_syllab', 'num_chars', 'sent_density', 'ttr', 'english_usage', 'pct_rel_trigrams', 'Essay', sep='\t', file=output_file)
# then print each record...
for line in output_list:
print(*line, sep='\t', file=output_file)