-
Notifications
You must be signed in to change notification settings - Fork 1
/
twomodels.py
53 lines (45 loc) · 1.63 KB
/
twomodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# create the test setup
import lightgbm as lgb
import pickle as pkl
from sklearn.linear_model import LinearRegression, SGDClassifier
from sklearn.preprocessing import LabelEncoder
import pandas as pd
#df['x1']= LabelEncoder().fit_transform(df['x1'])
data= {
'x': [1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0],
'q': [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0],
'b': [1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
'target': [0.0, 2.0, 1.5, 0.0, 5.1, 4.0, 0.0, 1.0, 2.0, 0.0, 2.1, 1.5]
}
df= pd.DataFrame(data)
X, y=df.iloc[:, :-1], df.iloc[:, -1]
X= X.astype('float32')
# create two models
model1= LinearRegression()
model2 = lgb.LGBMRegressor(n_estimators=5, num_leaves=10, min_child_samples=1)
ser_model1= X['x']==0.0
model1.fit(X[ser_model1], y[ser_model1])
model2.fit(X[~ser_model1], y[~ser_model1])
# define a class that mocks the model interface
class CombinedModel:
def __init__(self, model1, model2):
self.model1= model1
self.model2= model2
def predict(self, X, **kwargs):
ser_model1= X['x']==0.0
return pd.concat([
pd.Series(self.model1.predict(X[ser_model1]), index=X.index[ser_model1]),
pd.Series(self.model2.predict(X[~ser_model1]), index=X.index[~ser_model1])
]
).sort_index()
# create a model with the two trained sum models
# and pickle it
model= CombinedModel(model1, model2)
model.predict(X)
with open('model.pkl', 'wb') as fp:
pkl.dump(model, fp)
model= model1= model2= None
# test load it
with open('model.pkl', 'rb') as fp:
model= pkl.load(fp)
model.predict(X)