forked from XiaoxinHe/G-Retriever
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
68 lines (54 loc) · 2.29 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import torch
import wandb
import gc
from tqdm import tqdm
from torch.utils.data import DataLoader
import json
import pandas as pd
from src.utils.seed import seed_everything
from src.config import parse_args_llama
from src.model import load_model, llama_model_path
from src.dataset import load_dataset
from src.utils.evaluate import eval_funcs
from src.utils.collate import collate_fn
def main(args):
# Step 1: Set up wandb
seed = args.seed
wandb.init(project=f"{args.project}",
name=f"{args.dataset}_{args.model_name}_seed{seed}",
config=args)
seed_everything(seed=seed)
print(args)
dataset = load_dataset[args.dataset]()
idx_split = dataset.get_idx_split()
# Step 2: Build Node Classification Dataset
test_dataset = [dataset[i] for i in idx_split['test']]
test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, drop_last=False, pin_memory=True, shuffle=False, collate_fn=collate_fn)
# Step 3: Build Model
args.llm_model_path = llama_model_path[args.llm_model_name]
model = load_model[args.model_name](graph=dataset.graph, graph_type=dataset.graph_type, args=args)
# Step 4. Evaluating
os.makedirs(f'{args.output_dir}/{args.dataset}', exist_ok=True)
path = f'{args.output_dir}/{args.dataset}/model_name_{args.model_name}_llm_model_name_{args.llm_model_name}_llm_frozen_{args.llm_frozen}_max_txt_len_{args.max_txt_len}_max_new_tokens_{args.max_new_tokens}_gnn_model_name_{args.gnn_model_name}_patience_{args.patience}_num_epochs_{args.num_epochs}_seed{seed}.csv'
print(f'path: {path}')
model.eval()
progress_bar_test = tqdm(range(len(test_loader)))
with open(path, "w") as f:
for _, batch in enumerate(test_loader):
with torch.no_grad():
output = model.inference(batch)
df = pd.DataFrame(output)
for _, row in df.iterrows():
f.write(json.dumps(dict(row)) + "\n")
progress_bar_test.update(1)
# Step 5. Post-processing & Evaluating
acc = eval_funcs[args.dataset](path)
print(f'Test Acc {acc}')
wandb.log({'Test Acc': acc})
if __name__ == "__main__":
args = parse_args_llama()
main(args)
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
gc.collect()