-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
393 lines (296 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Tomer Shay, Roei Gida
import argparse
from copy import deepcopy
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, optim
from torch.utils.data import TensorDataset
import torchvision
class BaseModel(nn.Module):
def __init__(self, image_size, lr):
super(BaseModel, self).__init__()
self.name = 'Base Model'
self.lr = lr
self.image_size = image_size
self.train_accuracies = []
self.train_loss = []
self.validate_accuracies = []
self.validate_loss = []
self.test_accuracies = []
self.test_loss = []
class ModelA(BaseModel):
def __init__(self, image_size, lr):
super(ModelA, self).__init__(image_size, lr)
self.name = 'Model A'
self.fc0 = nn.Linear(image_size, 100)
self.fc1 = nn.Linear(100, 50)
self.fc2 = nn.Linear(50, 10)
self.optimizer = optim.SGD(self.parameters(), lr=self.lr)
def forward(self, x):
x = x.view(-1, self.image_size)
x = F.relu(self.fc0(x))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class ModelB(ModelA):
def __init__(self, image_size, lr):
super(ModelB, self).__init__(image_size, lr)
self.name = 'Model B'
self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
class ModelC(ModelB):
def __init__(self, image_size, lr, dropout=0.2):
super(ModelC, self).__init__(image_size, lr)
self.name = 'Model C'
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
x = x.view(-1, self.image_size)
x = F.relu(self.fc0(x))
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class ModelD(ModelB):
def __init__(self, image_size, lr):
super(ModelD, self).__init__(image_size, lr)
self.name = 'Model D'
self.batch_norm_1 = nn.BatchNorm1d(100)
self.batch_norm_2 = nn.BatchNorm1d(50)
def forward(self, x):
x = x.view(-1, self.image_size)
x = self.fc0(x)
x = self.batch_norm_1(x)
x = F.relu(x)
x = self.fc1(x)
x = self.batch_norm_2(x)
x = F.relu(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class ModelE(BaseModel):
def __init__(self, image_size, lr):
super(ModelE, self).__init__(image_size, lr)
self.name = 'Model E'
self.fc0 = nn.Linear(image_size, 128)
self.fc1 = nn.Linear(128, 64)
self.fc2 = nn.Linear(64, 10)
self.fc3 = nn.Linear(10, 10)
self.fc4 = nn.Linear(10, 10)
self.optimizer = optim.SGD(self.parameters(), lr=self.lr)
self.activation_func = F.relu
def forward(self, x):
x = x.view(-1, self.image_size)
x = self.activation_func(self.fc0(x))
x = self.activation_func(self.fc1(x))
x = self.activation_func(self.fc2(x))
x = self.activation_func(self.fc3(x))
x = self.fc4(x)
return F.log_softmax(x, dim=1)
class ModelF(ModelE):
def __init__(self, image_size, lr):
super(ModelF, self).__init__(image_size, lr)
self.name = 'Model F'
self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
self.activation_func = torch.sigmoid
class BestModel(BaseModel):
def __init__(self, image_size, lr):
super(BestModel, self).__init__(image_size, lr=lr)
self.name = 'Best Model'
self.batch_norm_0 = nn.BatchNorm1d(image_size)
self.batch_norm_1 = nn.BatchNorm1d(512)
self.batch_norm_2 = nn.BatchNorm1d(256)
self.batch_norm_3 = nn.BatchNorm1d(128)
self.batch_norm_4 = nn.BatchNorm1d(64)
self.fc0 = nn.Linear(image_size, 512)
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, 10)
self.dropout = nn.Dropout(p=0.1)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
def forward(self, x):
x = x.view(-1, self.image_size)
x = self.dropout(x)
x = F.leaky_relu(self.batch_norm_1(self.fc0(x)))
x = F.leaky_relu(self.batch_norm_2(self.fc1(x)))
x = self.dropout(x)
x = F.leaky_relu(self.batch_norm_3(self.fc2(x)))
x = F.leaky_relu(self.batch_norm_4(self.fc3(x)))
x = self.dropout(x)
x = self.fc4(x)
return F.log_softmax(x, dim=1)
def export_plot(model):
plt.subplot(2, 1, 1)
plt.title(f'{model.name}')
plt.plot(model.train_accuracies, label="train")
plt.plot(model.validate_accuracies, label="validate")
plt.plot(model.test_accuracies, label="test")
plt.ylabel("Accuracy")
plt.subplot(2, 1, 2)
plt.plot(model.train_loss, label="train")
plt.plot(model.validate_loss, label="validate")
plt.plot(model.test_loss, label="test")
plt.ylabel('Loss')
plt.xlabel('Epochs')
plt.legend()
plt.savefig(f'{model.name}.png')
print(f'model saved to \'{model.name}.png\'')
def train(model, train_set):
model.train()
train_loss = 0
correct = 0
for _, (x, y) in enumerate(train_set):
model.optimizer.zero_grad()
output = model(x)
loss = F.nll_loss(output, y.T[0])
loss.backward()
model.optimizer.step()
train_loss += float(loss.data)
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(y.view_as(pred)).sum().item()
model.train_accuracies.append(100 * correct / len(train_set.dataset))
model.train_loss.append(train_loss / (len(train_set.dataset) / train_set.batch_size))
def validate(model, validate_set, is_test=False):
model.eval()
validate_loss = 0
correct = 0
with torch.no_grad():
for _, (x, y) in enumerate(validate_set):
output = model(x)
loss = F.nll_loss(output, y.T[0])
validate_loss += float(loss.data)
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(y.view_as(pred)).sum().item()
if not is_test:
model.validate_accuracies.append(100 * correct / len(validate_set.dataset))
model.validate_loss.append(validate_loss / (len(validate_set.dataset) / validate_set.batch_size))
else:
model.test_accuracies.append(100 * correct / len(validate_set.dataset))
model.test_loss.append(validate_loss / (len(validate_set.dataset) / validate_set.batch_size))
def running_epochs(model, epochs, is_best):
global train_loader, validate_loader, test_loader
best_acc_model = deepcopy(model)
best_val_acc = 0
for i in range(epochs):
if is_best:
if i == 14:
model.optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.975)
if i % 7 == 0:
model.optimizer.param_groups[0]['lr'] *= 0.2
print(f'====== {model.name} EPOCH #{i + 1} ============')
train(model, train_loader)
print(f'[train accuracy:]\t\t\t{"{:.2f}".format(model.train_accuracies[-1])}%')
print(f'[train loss:]\t\t\t\t{"{:.2f}".format(model.train_loss[-1])}')
validate(model, validate_loader)
print(f'[validate accuracy:]\t\t{"{:.2f}".format(model.validate_accuracies[-1])}%')
print(f'[validate loss:]\t\t\t{"{:.2f}".format(model.validate_loss[-1])}')
if best_val_acc < model.validate_accuracies[-1]:
best_val_acc = model.validate_accuracies[-1]
best_acc_model = deepcopy(model)
if best_val_acc > 90:
model.optimizer.param_groups[0]['lr'] = 0.0001
print('---- model saved! ----')
validate(model, test_loader, is_test=True)
print(f'[test accuracy:]\t\t\t{"{:.2f}".format(model.test_accuracies[-1])}%')
print(f'[test loss:]\t\t\t\t{"{:.2f}".format(model.test_loss[-1])}')
return best_acc_model
def load_original_mnist_fashion(batch_size, validate_percentage):
print("loading files..")
transforms = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,), (0.3081,))])
dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, transform=transforms, download=True)
train_set, val_set = torch.utils.data.random_split(dataset, [len(dataset.data) * (1 - validate_percentage / 100),
len(dataset.data) * (validate_percentage / 100)])
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
validate_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.FashionMNIST('./data', download=True, train=False, transform=transforms),
batch_size=batch_size)
return train_loader, validate_loader, test_loader
def load_local_mnist_fashion(train_x_file, train_y_file, test_x_file, test_y_file, batch_size, validate_percentage):
# get data from the files
print("loading files..")
train_x = np.loadtxt(train_x_file)
train_y = np.array([np.loadtxt(train_y_file)]).T
test_x = np.loadtxt(test_x_file)
test_y = np.array([np.loadtxt(test_y_file)]).T
train_x /= 255 # normalize train pixels to 0 - 1
test_x /= 255 # normalize test pixels to 0 - 1
# shuffle train data set
# print("shuffle training set..")
rand = np.arange(len(train_x))
np.random.shuffle(rand)
train_x = train_x[rand]
train_y = train_y[rand]
# print("separate into validate..")
validate_x = train_x[:(len(train_x) * validate_percentage) // 100]
validate_y = train_y[:(len(train_y) * validate_percentage) // 100]
train_x = train_x[(len(train_x) * validate_percentage) // 100:]
train_y = train_y[(len(train_y) * validate_percentage) // 100:]
# from numpy array to torch tensor
train_x = torch.from_numpy(train_x).float()
train_y = torch.from_numpy(train_y).long()
validate_x = torch.from_numpy(validate_x).float()
validate_y = torch.from_numpy(validate_y).long()
test_x = torch.from_numpy(test_x).float()
test_y = torch.from_numpy(test_y).long()
train_xy = TensorDataset(train_x, train_y)
validate_xy = TensorDataset(validate_x, validate_y)
test_xy = TensorDataset(test_x, test_y)
train_loader = torch.utils.data.DataLoader(train_xy, batch_size=batch_size, shuffle=True)
validate_loader = torch.utils.data.DataLoader(validate_xy, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(test_xy, batch_size=batch_size)
return train_loader, validate_loader, test_loader
# get arguments
parser = argparse.ArgumentParser()
# -train_x train_x -train_y train_y -test_x test_x -test_y test_y -e epochs...
parser.add_argument("-train_x", dest="train_x_path", default="train_x", help="train_x file path")
parser.add_argument("-train_y", dest="train_y_path", default="train_y", help="train_y file path")
parser.add_argument("-test_x", dest="test_x_path", default="test_x", help="test_x file path")
parser.add_argument("-test_y", dest="test_y_path", default="test_y", help="test_y file path")
parser.add_argument("-e", dest="epochs", default="10", help="Epochs")
parser.add_argument("-batch_size", dest="batch_size", default="64", help="Batch Size")
parser.add_argument("-validate", dest="validate_percentage", default="10", help="Validate Percentage")
parser.add_argument("-model", dest="model", default="BestModel",
help="The Model to run (between A to F or \"BestModel\"")
parser.add_argument("-local", dest="is_local", default="False",
help="True for using local train and test file, False for using the original MNIST-fashion dataset")
parser.add_argument("-plot", dest="to_export", default="True",
help="False to don't export a graph of accuracy and loss values.")
args = parser.parse_args()
if bool(args.is_local):
train_loader, validate_loader, test_loader = load_local_mnist_fashion(args.train_x_path, args.train_y_path,
args.test_x_path, args.test_y_path,
int(args.batch_size),
int(args.validate_percentage))
else:
train_loader, validate_loader, test_loader = load_original_mnist_fashion(int(args.batch_size),
int(args.validate_percentage))
is_best = False
if args.model == 'A':
model = ModelA(image_size=28 * 28, lr=0.12)
elif args.model == 'B':
model = ModelB(image_size=28 * 28, lr=0.0001)
elif args.model == 'C':
model = ModelC(image_size=28 * 28, lr=0.0001)
elif args.model == 'D':
model = ModelD(image_size=28 * 28, lr=0.01)
elif args.model == 'E':
model = ModelE(image_size=28 * 28, lr=0.1)
elif args.model == 'F':
model = ModelF(image_size=28 * 28, lr=0.001)
else:
model = BestModel(image_size=28 * 28, lr=0.001)
is_best = True
best_model = running_epochs(model, int(args.epochs), is_best=is_best)
print("========================================")
print("learn finished.", end=' ')
if bool(args.to_export):
print("exporting plot..")
export_plot(best_model)
else:
print()
print('\nfinal accuracy:')
validate(best_model, test_loader, is_test=True)
print(f'[test accuracy:]\t\t\t{"{:.2f}".format(best_model.test_accuracies[-1])}%')
print(f'[test loss:]\t\t\t\t{"{:.2f}".format(best_model.test_loss[-1])}')