-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_cifar10c.py
61 lines (46 loc) · 1.9 KB
/
eval_cifar10c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import argparse
import numpy as np
import torch
import models
import pandas as pd
import data
from robustbench.data import load_cifar10
from robustbench.utils import clean_accuracy
def corr_eval(x_corrs, y_corrs, model):
model.eval()
res = np.zeros((5, 15))
for i in range(1, 6):
for j, c in enumerate(data.corruptions):
res[i-1, j] = clean_accuracy(model, x_corrs[i][j].cuda(), y_corrs[i][j].cuda())
print(c, i, res[i-1, j])
return res
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--data_dir', default='./data', type=str)
parser.add_argument('--checkpoint', default='', type=str)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--output', default='output.csv', type=str)
parser.add_argument('--only_clean', action='store_true')
return parser.parse_args()
def main():
args = get_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
x_clean, y_clean = load_cifar10(n_examples=10000, data_dir=args.data_dir)
model = models.PreActResNet18(n_cls=10, model_width=64, cifar_norm=True).cuda()
model.load_state_dict(torch.load(args.checkpoint)['last'])
model.eval()
clean_acc = clean_accuracy(model, x_clean.cuda(), y_clean.cuda())
print("Clean accuracy: ", clean_acc)
if args.only_clean:
return
x_corrs, y_corrs, _, _ = data.get_cifar10_numpy()
corr_res_last = corr_eval(x_corrs, y_corrs, model)
corr_data_last = pd.DataFrame({i+1: corr_res_last[i, :] for i in range(0, 5)}, index=data.corruptions)
corr_data_last.loc['average'] = {i+1: np.mean(corr_res_last, axis=1)[i] for i in range(0, 5)}
corr_data_last['avg'] = corr_data_last[list(range(1,6))].mean(axis=1)
corr_data_last.to_csv(args.output)
print(corr_data_last)
if __name__ == "__main__":
main()