-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathiHmmNormalSampleGibbs.m
198 lines (176 loc) · 8.48 KB
/
iHmmNormalSampleGibbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
function [S, stats] = iHmmNormalSampleGibbs(Y, hypers, numb, nums, numi, S0)
% IHMMNORMALSAMPLEGIBBS Samples states from the iHMM with normal output
% using the Gibbs sampler.
%
% [S, stats] = iHmmNormalSampleGibbs(Y, hypers, numb, nums, numi, S0) uses
% the beam sampling training algorithm for the infinite HMM.
%
% Input Parameters:
% - Y: training sequence of arbitrary length,
% - hypers: a structure that describes the hyperparameters for the beam
% sampler. If this structure contains alpha0 and gamma, it will
% not resample these during the algorithm. If these are not
% specified, one needs to specify hyperparameters for alpha0
% and gamma (alpha0_a, alpha0_b, gamma_a, gamma_b). hypers
% should also contain the normal parameters for the mean prior
% mu_0, sigma2_0 and the output variance sigma2.
% - numb: the number of burnin iterations,
% - nums: the number of samples to output,
% - numi: the number of sampling, iterations between two samples,
% - S0: is the initial assignment to the sequence.
%
% Output Parameters:
% - S: is a cell array of sample structures where each sample contains the
% hidden state sequence S, the number of states K and the Beta
% used for that sample.
% - stats: is a structure that contains a variety of statistics for every
% iteration of the sampler: K, alpha0, gamma, the size of the
% trellis and the marginal likelihood.
% Initialize the sampler.
T = size(Y,2); % # of time-steps T.
sample.S = S0;
sample.K = max(S0);
% Setup structures to store the output.
S = {};
stats.K = zeros(1,(numb + (nums-1)*numi));
stats.alpha0 = zeros(1,(numb + (nums-1)*numi));
stats.gamma = zeros(1,(numb + (nums-1)*numi));
stats.jll = zeros(1,(numb + (nums-1)*numi));
stats.trellis = zeros(1,(numb + (nums-1)*numi));
% Initialize hypers; resample a few times as our inital guess might be off.
if isfield(hypers, 'alpha0')
sample.alpha0 = hypers.alpha0;
else
sample.alpha0 = gamrnd(hypers.alpha0_a, 1.0 / hypers.alpha0_b);
end
if isfield(hypers, 'gamma')
sample.gamma = hypers.gamma;
else
sample.gamma = gamrnd(hypers.gamma_a, 1.0 / hypers.gamma_b);
end
for i=1:5
sample.Beta = ones(1, sample.K+1) / (sample.K+1);
[sample.Beta, sample.alpha0, sample.gamma] = iHmmHyperSample(sample.S, sample.Beta, sample.alpha0, sample.gamma, hypers, 20);
end
iter = 1;
fprintf('Iteration 0: K = %d, alpha0 = %f, gamma = %f.\n', sample.K, sample.alpha0, sample.gamma);
while iter <= (numb + (nums-1)*numi)
% Compute the sufficient statistics for the normal distribution.
E = zeros(sample.K, 2);
for t=1:T
E(sample.S(t), 1) = E(sample.S(t), 1) + Y(t);
E(sample.S(t), 2) = E(sample.S(t), 2) + 1;
end
% Compute the empirical transition matrix.
% N(i,j) = number of transition from state i to j.
N = zeros(sample.K, sample.K);
N(1, sample.S(1)) = 1;
for t=2:T
N(sample.S(t-1), sample.S(t)) = N(sample.S(t-1), sample.S(t)) + 1;
end
% Start resampling the hidden state sequence.
for t=1:T
% Discount the transition and emission counts for timestep t.
E(sample.S(t), 1) = E(sample.S(t), 1) - Y(t);
E(sample.S(t), 2) = E(sample.S(t), 2) - 1;
if t ~= 1
N(sample.S(t-1), sample.S(t)) = N(sample.S(t-1), sample.S(t)) - 1;
else
N(1, sample.S(t)) = N(1, sample.S(t)) - 1;
end
if t ~= T
N(sample.S(t), sample.S(t+1)) = N(sample.S(t), sample.S(t+1)) - 1;
end
% Compute the marginal probability for timestep t.
r = ones(1, sample.K+1);
for k=1:sample.K
if t ~= 1
r(k) = r(k) * ( N(sample.S(t-1), k) + sample.alpha0 * sample.Beta(k) );
else
r(k) = r(k) * ( N(1, k) + sample.alpha0 * sample.Beta(k) );
end
if t ~= T
if t > 1 && k ~= sample.S(t-1)
r(k) = r(k) * ( N(k, sample.S(t+1)) + sample.alpha0 * sample.Beta(sample.S(t+1)) ) / ( sum(N(k, :)) + sample.alpha0 );
elseif t == 1 && k ~= 1
r(k) = r(k) * ( N(k, sample.S(t+1)) + sample.alpha0 * sample.Beta(sample.S(t+1)) ) / ( sum(N(k, :)) + sample.alpha0 );
elseif t > 1 && k == sample.S(t-1) && k ~= sample.S(t+1)
r(k) = r(k) * ( N(k, sample.S(t+1)) + sample.alpha0 * sample.Beta(sample.S(t+1)) ) / ( sum(N(k, :)) + 1 + sample.alpha0 );
elseif t > 1 && k == sample.S(t-1) && k == sample.S(t+1)
r(k) = r(k) * ( N(k, sample.S(t+1)) + 1 + sample.alpha0 * sample.Beta(sample.S(t+1)) ) / ( sum(N(k, :)) + 1 + sample.alpha0 );
elseif t == 1 && k == 1 && k ~= sample.S(t+1)
r(k) = r(k) * ( N(k, sample.S(t+1)) + sample.alpha0 * sample.Beta(sample.S(t+1)) ) / ( sum(N(k, :)) + 1 + sample.alpha0 );
elseif t == 1 && k == 1 && k == sample.S(t+1)
r(k) = r(k) * ( N(k, sample.S(t+1)) + 1 + sample.alpha0 * sample.Beta(sample.S(t+1)) ) / ( sum(N(k, :)) + 1 + sample.alpha0 );
end
end
sigma2_n = 1/(1/hypers.sigma2_0 + E(k, 2) / hypers.sigma2);
mu_n = sigma2_n * (hypers.mu_0 / hypers.sigma2_0 + E(k,1) / hypers.sigma2);
% Speedup
% r(k) = r(k) * normpdf(Y(t), mu_n, sqrt(sigma2_n + hypers.sigma2));
r(k) = r(k) * exp(-0.5 * (Y(t)-mu_n)*(Y(t)-mu_n) / (sigma2_n + hypers.sigma2));
end
% Speedup
%r(sample.K+1) = normpdf(Y(t), hypers.mu_0, sqrt(hypers.sigma2_0 + hypers.sigma2)) * sample.alpha0 * sample.Beta(sample.K+1);
r(sample.K+1) = exp(-0.5 * (Y(t)-hypers.mu_0)*(Y(t)-hypers.mu_0) / (hypers.sigma2_0 + hypers.sigma2)) * sample.alpha0 * sample.Beta(sample.K+1);
if t ~= T
r(sample.K+1) = r(sample.K+1) * sample.Beta(sample.S(t+1));
end
% Resample s_t.
r = r ./ sum(r);
sample.S(t) = 1 + sum(rand() > cumsum(r));
% Update datastructures if we move to a new state.
assert(size(N,1) == sample.K);
assert(size(N,2) == sample.K);
if sample.S(t) > sample.K
N(:, sample.S(t)) = 0; % We have a new state: augment data structures
N(sample.S(t), :) = 0;
E(sample.S(t), :) = 0;
% Extend Beta. Standard stick-breaking construction stuff
b = betarnd(1, sample.gamma);
BetaU = sample.Beta(end);
sample.Beta(end) = b * BetaU;
sample.Beta(end+1) = (1-b)*BetaU;
sample.K = sample.K + 1;
end
% Update emission and transition counts.
E(sample.S(t), 1) = E(sample.S(t), 1) + Y(t);
E(sample.S(t), 2) = E(sample.S(t), 2) + 1;
if t ~= 1
N(sample.S(t-1), sample.S(t)) = N(sample.S(t-1), sample.S(t)) + 1;
else
N(1, sample.S(t)) = N(1, sample.S(t)) + 1;
end
if t ~= T
N(sample.S(t), sample.S(t+1)) = N(sample.S(t), sample.S(t+1)) + 1;
end
% Perform some coherency checks on the datastructures.
assert(size(N,1) == sample.K);
assert(size(N,2) == sample.K);
assert(length(sample.Beta) == sample.K+1);
assert(sum(sum(N)) == T);
assert(sum(E(:,2)) == T);
end
% Recompute the number of states.
zind = sort(setdiff(1:sample.K, unique(sample.S)));
for i=size(zind,2):-1:1 % Make sure we delete from the back onwards, otherwise indexing is more complex.
sample.S(sample.S > zind(i)) = sample.S(sample.S > zind(i)) - 1;
sample.Beta(end) = sample.Beta(end) + sample.Beta(zind(i));
sample.Beta(zind(i)) = [];
end
sample.K = size(sample.Beta,2)-1;
% Resample Beta
[sample.Beta sample.alpha0 sample.gamma] = iHmmHyperSample(sample.S, sample.Beta, sample.alpha0, sample.gamma, hypers, 20);
% Prepare next iteration.
stats.alpha0(iter) = sample.alpha0;
stats.gamma(iter) = sample.gamma;
stats.K(iter) = sample.K;
stats.jll(iter) = iHmmNormalJointLogLikelihood(sample.S, Y, sample.Beta, ...
sample.alpha0, hypers.mu_0, hypers.sigma2_0, hypers.sigma2);
fprintf('Iteration: %d: K = %d, alpha0 = %f, gamma = %f, JL = %f.\n', ...
iter, sample.K, sample.alpha0,sample. gamma, stats.jll(iter));
if iter >= numb && mod(iter-numb, numi) == 0
S{end+1} = sample;
end
iter = iter + 1;
end