-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathconv_benchmark.py
70 lines (55 loc) · 1.47 KB
/
conv_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import time
import tensorflow as tf
import math
#tf.config.set_visible_devices([], 'GPU')
MN = 3
CK = 128
HW = 256
batch_size = 32
conv_type = "normal"
if conv_type=="normal":
conv_layer = tf.keras.layers.Conv2D(
filters=CK,
kernel_size=(MN,MN),
activation=None,
use_bias=False
)
conv_flops = MN * MN * CK * CK * HW * HW
conv_params = MN * MN * CK * CK
elif conv_type=="depsep":
conv_layer = tf.keras.layers.SeparableConv2D(
filters=CK,
kernel_size=(MN,MN),
activation=None,
use_bias=False
)
conv_flops = MN * MN * CK * HW * HW + CK * CK * HW * HW
conv_params = MN * MN * CK + CK * CK
print("")
print("Conv2D type:", conv_type)
print("Params:", conv_params)
print("FLOPs:", conv_flops)
print("")
input_shape = (batch_size, HW, HW, CK)
in_data = tf.random.normal(input_shape)
@tf.function(experimental_autograph_options=tf.autograph.experimental.Feature.ALL)
def run_conv(in_data):
print("Tracing")
return conv_layer(in_data)
iterations = 30
C = run_conv(in_data)
C.numpy()
print("Start benchmark")
try:
while True:
st = time.time()
for i in range(iterations):
C = run_conv(in_data)
C.numpy()
et = time.time()
duration = et-st
fps = batch_size*iterations/duration
tflops = fps*conv_flops/(1e12)
print("Conv/sec:", round(fps,1), "TFLOPS:", round(tflops,1))
except KeyboardInterrupt:
pass