forked from litagin02/Style-Bert-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ms_jp_extra.py
1102 lines (1046 loc) · 39.7 KB
/
train_ms_jp_extra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import datetime
import gc
import os
import platform
import torch
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from huggingface_hub import HfApi
# logging.getLogger("numba").setLevel(logging.WARNING)
import commons
import default_style
import utils
from common.log import logger
from common.stdout_wrapper import SAFE_STDOUT
from config import config
from data_utils import (
DistributedBucketSampler,
TextAudioSpeakerCollate,
TextAudioSpeakerLoader,
)
from losses import WavLMLoss, discriminator_loss, feature_loss, generator_loss, kl_loss
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from models_jp_extra import (
DurationDiscriminator,
MultiPeriodDiscriminator,
SynthesizerTrn,
WavLMDiscriminator,
)
from text.symbols import symbols
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = (
True # If encontered training problem,please try to disable TF32.
)
torch.set_num_threads(1)
torch.set_float32_matmul_precision("medium")
torch.backends.cuda.sdp_kernel("flash")
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(
True
) # Not available if torch version is lower than 2.0
global_step = 0
api = HfApi()
def run():
# Command line configuration is not recommended unless necessary, use config.yml
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
type=str,
default=config.train_ms_config.config_path,
help="JSON file for configuration",
)
parser.add_argument(
"-m",
"--model",
type=str,
help="数据集文件夹路径,请注意,数据不再默认放在/logs文件夹下。如果需要用命令行配置,请声明相对于根目录的路径",
default=config.dataset_path,
)
parser.add_argument(
"--assets_root",
type=str,
help="Root directory of model assets needed for inference.",
default=config.assets_root,
)
parser.add_argument(
"--skip_default_style",
action="store_true",
help="Skip saving default style config and mean vector.",
)
parser.add_argument(
"--no_progress_bar",
action="store_true",
help="Do not show the progress bar while training.",
)
parser.add_argument(
"--speedup",
action="store_true",
help="Speed up training by disabling logging and evaluation.",
)
parser.add_argument(
"--repo_id",
help="Huggingface model repo id to backup the model.",
default=None,
)
args = parser.parse_args()
# Set log file
model_dir = os.path.join(args.model, config.train_ms_config.model_dir)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
logger.add(os.path.join(args.model, f"train_{timestamp}.log"))
# Parsing environment variables
envs = config.train_ms_config.env
for env_name, env_value in envs.items():
if env_name not in os.environ.keys():
logger.info("Loading configuration from config {}".format(str(env_value)))
os.environ[env_name] = str(env_value)
logger.info(
"Loading environment variables \nMASTER_ADDR: {},\nMASTER_PORT: {},\nWORLD_SIZE: {},\nRANK: {},\nLOCAL_RANK: {}".format(
os.environ["MASTER_ADDR"],
os.environ["MASTER_PORT"],
os.environ["WORLD_SIZE"],
os.environ["RANK"],
os.environ["LOCAL_RANK"],
)
)
backend = "nccl"
if platform.system() == "Windows":
backend = "gloo" # If Windows,switch to gloo backend.
dist.init_process_group(
backend=backend,
init_method="env://",
timeout=datetime.timedelta(seconds=300),
) # Use torchrun instead of mp.spawn
rank = dist.get_rank()
local_rank = int(os.environ["LOCAL_RANK"])
n_gpus = dist.get_world_size()
hps = utils.get_hparams_from_file(args.config)
# This is needed because we have to pass values to `train_and_evaluate()
hps.model_dir = model_dir
hps.speedup = args.speedup
hps.repo_id = args.repo_id
# 比较路径是否相同
if os.path.realpath(args.config) != os.path.realpath(
config.train_ms_config.config_path
):
with open(args.config, "r", encoding="utf-8") as f:
data = f.read()
os.makedirs(os.path.dirname(config.train_ms_config.config_path), exist_ok=True)
with open(config.train_ms_config.config_path, "w", encoding="utf-8") as f:
f.write(data)
"""
Path constants are a bit complicated...
TODO: Refactor or rename these?
(Both `config.yml` and `config.json` are used, which is confusing I think.)
args.model: For saving all info needed for training.
default: `Data/{model_name}`.
hps.model_dir := model_dir: For saving checkpoints (for resuming training).
default: `Data/{model_name}/models`.
(Use `hps` since we have to pass `model_dir` to `train_and_evaluate()`.
args.assets_root: The root directory of model assets needed for inference.
default: config.assets_root == `model_assets`.
config.out_dir: The directory for model assets of this model (for inference).
default: `model_assets/{model_name}`.
"""
if args.repo_id is not None:
# First try to upload config.json to check if the repo exists
try:
api.upload_file(
path_or_fileobj=args.config,
path_in_repo=f"Data/{config.model_name}/config.json",
repo_id=hps.repo_id,
)
except Exception as e:
logger.error(e)
logger.error(
f"Failed to upload files to the repo {hps.repo_id}. Please check if the repo exists and you have logged in using `huggingface-cli login`."
)
raise e
# Upload Data dir for resuming training
api.upload_folder(
repo_id=hps.repo_id,
folder_path=config.dataset_path,
path_in_repo=f"Data/{config.model_name}",
delete_patterns="*.pth", # Only keep the latest checkpoint
ignore_patterns=f"{config.dataset_path}/raw", # Ignore raw data
run_as_future=True,
)
os.makedirs(config.out_dir, exist_ok=True)
if not args.skip_default_style:
# Save default style to out_dir
default_style.set_style_config(
args.config, os.path.join(config.out_dir, "config.json")
)
default_style.save_mean_vector(
os.path.join(args.model, "wavs"),
os.path.join(config.out_dir, "style_vectors.npy"),
)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(local_rank)
global global_step
writer = None
writer_eval = None
if rank == 0 and not args.speedup:
# logger = utils.get_logger(hps.model_dir)
# logger.info(hps)
utils.check_git_hash(model_dir)
writer = SummaryWriter(log_dir=model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(model_dir, "eval"))
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
collate_fn = TextAudioSpeakerCollate(use_jp_extra=True)
train_loader = DataLoader(
train_dataset,
# メモリ消費量を減らそうとnum_workersを1にしてみる
# num_workers=min(config.train_ms_config.num_workers, os.cpu_count() // 2),
num_workers=1,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
# これもメモリ消費量を減らそうとしてコメントアウト
# prefetch_factor=6,
) # DataLoader config could be adjusted.
eval_dataset = None
eval_loader = None
if rank == 0 and not args.speedup:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(
eval_dataset,
num_workers=0,
shuffle=False,
batch_size=1,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
if (
"use_noise_scaled_mas" in hps.model.keys()
and hps.model.use_noise_scaled_mas is True
):
logger.info("Using noise scaled MAS for VITS2")
mas_noise_scale_initial = 0.01
noise_scale_delta = 2e-6
else:
logger.info("Using normal MAS for VITS1")
mas_noise_scale_initial = 0.0
noise_scale_delta = 0.0
if (
"use_duration_discriminator" in hps.model.keys()
and hps.model.use_duration_discriminator is True
):
logger.info("Using duration discriminator for VITS2")
net_dur_disc = DurationDiscriminator(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(local_rank)
else:
net_dur_disc = None
if (
"use_wavlm_discriminator" in hps.model.keys()
and hps.model.use_wavlm_discriminator is True
):
net_wd = WavLMDiscriminator(
hps.model.slm.hidden, hps.model.slm.nlayers, hps.model.slm.initial_channel
).cuda(local_rank)
else:
net_wd = None
if (
"use_spk_conditioned_encoder" in hps.model.keys()
and hps.model.use_spk_conditioned_encoder is True
):
if hps.data.n_speakers == 0:
raise ValueError(
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
)
else:
logger.info("Using normal encoder for VITS1")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
mas_noise_scale_initial=mas_noise_scale_initial,
noise_scale_delta=noise_scale_delta,
**hps.model,
).cuda(local_rank)
if getattr(hps.train, "freeze_JP_bert", False):
logger.info("Freezing (JP) bert encoder !!!")
for param in net_g.enc_p.bert_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_style", False):
logger.info("Freezing style encoder !!!")
for param in net_g.enc_p.style_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_decoder", False):
logger.info("Freezing decoder !!!")
for param in net_g.dec.parameters():
param.requires_grad = False
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(local_rank)
optim_g = torch.optim.AdamW(
filter(lambda p: p.requires_grad, net_g.parameters()),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if net_dur_disc is not None:
optim_dur_disc = torch.optim.AdamW(
net_dur_disc.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
else:
optim_dur_disc = None
if net_wd is not None:
optim_wd = torch.optim.AdamW(
net_wd.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
else:
optim_wd = None
net_g = DDP(
net_g,
device_ids=[local_rank],
# bucket_cap_mb=512
)
net_d = DDP(
net_d,
device_ids=[local_rank],
# bucket_cap_mb=512
)
if net_dur_disc is not None:
net_dur_disc = DDP(
net_dur_disc,
device_ids=[local_rank],
# bucket_cap_mb=512,
)
if net_wd is not None:
net_wd = DDP(
net_wd,
device_ids=[local_rank],
# bucket_cap_mb=512
)
if utils.is_resuming(model_dir):
if net_dur_disc is not None:
try:
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "DUR_*.pth"),
net_dur_disc,
optim_dur_disc,
skip_optimizer=(
hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True
),
)
if not optim_dur_disc.param_groups[0].get("initial_lr"):
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
except:
if not optim_dur_disc.param_groups[0].get("initial_lr"):
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
print("Initialize dur_disc")
if net_wd is not None:
try:
_, optim_wd, wd_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "WD_*.pth"),
net_wd,
optim_wd,
skip_optimizer=(
hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True
),
)
if not optim_wd.param_groups[0].get("initial_lr"):
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr
except:
if not optim_wd.param_groups[0].get("initial_lr"):
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr
logger.info("Initialize wavlm")
try:
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "G_*.pth"),
net_g,
optim_g,
skip_optimizer=(
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True
),
)
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "D_*.pth"),
net_d,
optim_d,
skip_optimizer=(
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True
),
)
if not optim_g.param_groups[0].get("initial_lr"):
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
if not optim_d.param_groups[0].get("initial_lr"):
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
epoch_str = max(epoch_str, 1)
# global_step = (epoch_str - 1) * len(train_loader)
global_step = int(
utils.get_steps(utils.latest_checkpoint_path(model_dir, "G_*.pth"))
)
logger.info(
f"******************Found the model. Current epoch is {epoch_str}, gloabl step is {global_step}*********************"
)
except Exception as e:
logger.warning(e)
logger.warning(
"It seems that you are not using the pretrained models, so we will train from scratch."
)
epoch_str = 1
global_step = 0
else:
try:
_ = utils.load_safetensors(
os.path.join(model_dir, "G_0.safetensors"), net_g
)
_ = utils.load_safetensors(
os.path.join(model_dir, "D_0.safetensors"), net_d
)
if net_dur_disc is not None:
_ = utils.load_safetensors(
os.path.join(model_dir, "DUR_0.safetensors"), net_dur_disc
)
if net_wd is not None:
_ = utils.load_safetensors(
os.path.join(model_dir, "WD_0.safetensors"), net_wd
)
logger.info("Loaded the pretrained models.")
except Exception as e:
logger.warning(e)
logger.warning(
"It seems that you are not using the pretrained models, so we will train from scratch."
)
finally:
epoch_str = 1
global_step = 0
def lr_lambda(epoch):
"""
Learning rate scheduler for warmup and exponential decay.
- During the warmup period, the learning rate increases linearly.
- After the warmup period, the learning rate decreases exponentially.
"""
if epoch < hps.train.warmup_epochs:
return float(epoch) / float(max(1, hps.train.warmup_epochs))
else:
return hps.train.lr_decay ** (epoch - hps.train.warmup_epochs)
scheduler_last_epoch = epoch_str - 2
scheduler_g = torch.optim.lr_scheduler.LambdaLR(
optim_g, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
scheduler_d = torch.optim.lr_scheduler.LambdaLR(
optim_d, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
if net_dur_disc is not None:
scheduler_dur_disc = torch.optim.lr_scheduler.LambdaLR(
optim_dur_disc, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
else:
scheduler_dur_disc = None
if net_wd is not None:
scheduler_wd = torch.optim.lr_scheduler.LambdaLR(
optim_wd, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
wl = WavLMLoss(
hps.model.slm.model,
net_wd,
hps.data.sampling_rate,
hps.model.slm.sr,
).to(local_rank)
else:
scheduler_wd = None
wl = None
scaler = GradScaler(enabled=hps.train.bf16_run)
logger.info("Start training.")
diff = abs(
epoch_str * len(train_loader) - (hps.train.epochs + 1) * len(train_loader)
)
pbar = None
if not args.no_progress_bar:
pbar = tqdm(
total=global_step + diff,
initial=global_step,
smoothing=0.05,
file=SAFE_STDOUT,
)
initial_step = global_step
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
local_rank,
epoch,
hps,
[net_g, net_d, net_dur_disc, net_wd, wl],
[optim_g, optim_d, optim_dur_disc, optim_wd],
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
scaler,
[train_loader, eval_loader],
logger,
[writer, writer_eval],
pbar,
initial_step,
)
else:
train_and_evaluate(
rank,
local_rank,
epoch,
hps,
[net_g, net_d, net_dur_disc, net_wd, wl],
[optim_g, optim_d, optim_dur_disc, optim_wd],
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
scaler,
[train_loader, None],
None,
None,
pbar,
initial_step,
)
scheduler_g.step()
scheduler_d.step()
if net_dur_disc is not None:
scheduler_dur_disc.step()
if net_wd is not None:
scheduler_wd.step()
if epoch == hps.train.epochs:
# Save the final models
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "D_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "DUR_{}.pth".format(global_step)),
)
if net_wd is not None:
utils.save_checkpoint(
net_wd,
optim_wd,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "WD_{}.pth".format(global_step)),
)
utils.save_safetensors(
net_g,
epoch,
os.path.join(
config.out_dir,
f"{config.model_name}_e{epoch}_s{global_step}.safetensors",
),
for_infer=True,
)
if hps.repo_id is not None:
future1 = api.upload_folder(
repo_id=hps.repo_id,
folder_path=config.dataset_path,
path_in_repo=f"Data/{config.model_name}",
delete_patterns="*.pth", # Only keep the latest checkpoint
ignore_patterns=f"{config.dataset_path}/raw", # Ignore raw data
run_as_future=True,
)
future2 = api.upload_folder(
repo_id=hps.repo_id,
folder_path=config.out_dir,
path_in_repo=f"model_assets/{config.model_name}",
run_as_future=True,
)
try:
future1.result()
future2.result()
except Exception as e:
logger.error(e)
if pbar is not None:
pbar.close()
def train_and_evaluate(
rank,
local_rank,
epoch,
hps,
nets,
optims,
schedulers,
scaler,
loaders,
logger,
writers,
pbar: tqdm,
initial_step: int,
):
net_g, net_d, net_dur_disc, net_wd, wl = nets
optim_g, optim_d, optim_dur_disc, optim_wd = optims
scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
if net_dur_disc is not None:
net_dur_disc.train()
if net_wd is not None:
net_wd.train()
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
style_vec,
) in enumerate(train_loader):
if net_g.module.use_noise_scaled_mas:
current_mas_noise_scale = (
net_g.module.mas_noise_scale_initial
- net_g.module.noise_scale_delta * global_step
)
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
x, x_lengths = x.cuda(local_rank, non_blocking=True), x_lengths.cuda(
local_rank, non_blocking=True
)
spec, spec_lengths = spec.cuda(
local_rank, non_blocking=True
), spec_lengths.cuda(local_rank, non_blocking=True)
y, y_lengths = y.cuda(local_rank, non_blocking=True), y_lengths.cuda(
local_rank, non_blocking=True
)
speakers = speakers.cuda(local_rank, non_blocking=True)
tone = tone.cuda(local_rank, non_blocking=True)
language = language.cuda(local_rank, non_blocking=True)
bert = bert.cuda(local_rank, non_blocking=True)
style_vec = style_vec.cuda(local_rank, non_blocking=True)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
(
y_hat,
l_length,
attn,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
(hidden_x, logw, logw_), # , logw_sdp),
g,
) = net_g(
x,
x_lengths,
spec,
spec_lengths,
speakers,
tone,
language,
bert,
style_vec,
)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y = commons.slice_segments(
y, ids_slice * hps.data.hop_length, hps.train.segment_size
) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
hidden_x.detach(),
x_mask.detach(),
logw_.detach(),
logw.detach(),
g.detach(),
)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
# TODO: I think need to mean using the mask, but for now, just mean all
(
loss_dur_disc,
losses_dur_disc_r,
losses_dur_disc_g,
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
loss_dur_disc_all = loss_dur_disc
optim_dur_disc.zero_grad()
scaler.scale(loss_dur_disc_all).backward()
scaler.unscale_(optim_dur_disc)
# torch.nn.utils.clip_grad_norm_(
# parameters=net_dur_disc.parameters(), max_norm=5
# )
grad_norm_dur = commons.clip_grad_value_(
net_dur_disc.parameters(), None
)
scaler.step(optim_dur_disc)
if net_wd is not None:
# logger.debug(f"y.shape: {y.shape}, y_hat.shape: {y_hat.shape}")
# shape: (batch, 1, time)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_slm = wl.discriminator(
y.detach().squeeze(1), y_hat.detach().squeeze(1)
).mean()
optim_wd.zero_grad()
scaler.scale(loss_slm).backward()
scaler.unscale_(optim_wd)
# torch.nn.utils.clip_grad_norm_(parameters=net_wd.parameters(), max_norm=200)
grad_norm_wd = commons.clip_grad_value_(net_wd.parameters(), None)
scaler.step(optim_wd)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
if getattr(hps.train, "bf16_run", False):
torch.nn.utils.clip_grad_norm_(parameters=net_d.parameters(), max_norm=200)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
if net_dur_disc is not None:
_, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw, g)
if net_wd is not None:
loss_lm = wl(y.detach().squeeze(1), y_hat.squeeze(1)).mean()
loss_lm_gen = wl.generator(y_hat.squeeze(1))
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
# loss_commit = loss_commit * hps.train.c_commit
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
if net_dur_disc is not None:
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
if net_wd is not None:
loss_gen_all += loss_dur_gen + loss_lm + loss_lm_gen
else:
loss_gen_all += loss_dur_gen
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
# if getattr(hps.train, "bf16_run", False):
torch.nn.utils.clip_grad_norm_(parameters=net_g.parameters(), max_norm=500)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0 and not hps.speedup:
lr = optim_g.param_groups[0]["lr"]
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
# logger.info(
# "Train Epoch: {} [{:.0f}%]".format(
# epoch, 100.0 * batch_idx / len(train_loader)
# )
# )
# logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
}
scalar_dict.update(
{
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/dur": loss_dur,
"loss/g/kl": loss_kl,
}
)
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
)
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
)
if net_dur_disc is not None:
scalar_dict.update({"loss/dur_disc/total": loss_dur_disc_all})
scalar_dict.update(
{
"loss/dur_disc_g/{}".format(i): v
for i, v in enumerate(losses_dur_disc_g)
}
)
scalar_dict.update(
{
"loss/dur_disc_r/{}".format(i): v
for i, v in enumerate(losses_dur_disc_r)
}
)
scalar_dict.update({"loss/g/dur_gen": loss_dur_gen})
scalar_dict.update(
{
"loss/g/dur_gen_{}".format(i): v
for i, v in enumerate(losses_dur_gen)
}
)
if net_wd is not None:
scalar_dict.update(
{
"loss/wd/total": loss_slm,
"grad_norm_wd": grad_norm_wd,
"loss/g/lm": loss_lm,
"loss/g/lm_gen": loss_lm_gen,
}
)
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
),
"all/attn": utils.plot_alignment_to_numpy(
attn[0, 0].data.cpu().numpy()
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
if (
global_step % hps.train.eval_interval == 0
and global_step != 0
and initial_step != global_step
):
if not hps.speedup:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
)
if net_wd is not None:
utils.save_checkpoint(
net_wd,
optim_wd,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "WD_{}.pth".format(global_step)),
)
keep_ckpts = config.train_ms_config.keep_ckpts
if keep_ckpts > 0:
utils.clean_checkpoints(
path_to_models=hps.model_dir,
n_ckpts_to_keep=keep_ckpts,
sort_by_time=True,
)
# Save safetensors (for inference) to `model_assets/{model_name}`
utils.save_safetensors(
net_g,
epoch,
os.path.join(
config.out_dir,
f"{config.model_name}_e{epoch}_s{global_step}.safetensors",
),
for_infer=True,
)
if hps.repo_id is not None:
api.upload_folder(
repo_id=hps.repo_id,
folder_path=config.dataset_path,
path_in_repo=f"Data/{config.model_name}",
delete_patterns="*.pth", # Only keep the latest checkpoint
ignore_patterns=f"{config.dataset_path}/raw", # Ignore raw data
run_as_future=True,
)
api.upload_folder(
repo_id=hps.repo_id,
folder_path=config.out_dir,
path_in_repo=f"model_assets/{config.model_name}",
run_as_future=True,
)
global_step += 1
if pbar is not None:
pbar.set_description(
"Epoch {}({:.0f}%)/{}".format(
epoch, 100.0 * batch_idx / len(train_loader), hps.train.epochs
)
)
pbar.update()