-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMobile_Attention.py
78 lines (70 loc) · 3.67 KB
/
Mobile_Attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
## Core code for Mobile-Attention, Please refer to https://github.com/thuml/Flowformer for specific experiments
class Mobile_Attention(nn.Module):
# Mobile Attention with head competing mechanism
def __init__(self, d_input, d_model, d_output, n_heads, drop_out=0.05, eps=1e-6):
super(Mobile_Attention, self).__init__()
self.n_heads = n_heads
self.query_projection = nn.Linear(d_input, d_model)
self.key_projection = nn.Linear(d_input, d_model)
self.value_projection = nn.Linear(d_input, d_model)
self.out_projection = nn.Linear(d_model, d_output)
self.dropout = nn.Dropout(drop_out)
self.eps = eps
def kernel_method(self, x):
return torch.sigmoid(x)
def dot_product(self, q, k, v):
kv = torch.einsum("nhld,nhlm->nhdm", k, v)
qkv = torch.einsum("nhld,nhdm->nhlm", q, kv)
return qkv
def forward(self, queries, keys, values):
## input: B (L or S) D; output: B L D
## Note: queries, keys, values are not projected yet
## 1. Linear projection
B, L, _ = queries.shape
_, S, _ = keys.shape
queries = self.query_projection(queries).view(B, L, self.n_heads, -1)
keys = self.key_projection(keys).view(B, S, self.n_heads, -1)
values = self.value_projection(values).view(B, S, self.n_heads, -1)
queries = queries.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
# 2. Non-negative projection
queries = self.kernel_method(queries)
keys = self.kernel_method(keys)
## 3. Mobile-Attention competing on the head dimension
# (1) Calculate incoming and outgoing flow
sink_incoming = 1.0 / torch.sum(
(queries + self.eps) * (keys.sum(dim=1, keepdim=True).repeat(1, self.n_heads, 1, 1) + self.eps), dim=-1)
source_outgoing = 1.0 / torch.sum(
(keys + self.eps) * (queries.sum(dim=1, keepdim=True).repeat(1, self.n_heads, 1, 1) + self.eps), dim=-1)
# (2) conservation refine for source and sink
conserved_sink = torch.sum((queries + self.eps) * (
(keys * source_outgoing[:, :, :, None]).sum(dim=1, keepdim=True).repeat(1, self.n_heads, 1,
1) + self.eps), dim=-1)
conserved_source = torch.sum((keys + self.eps) * (
(queries * sink_incoming[:, :, :, None]).sum(dim=1, keepdim=True).repeat(1, self.n_heads, 1,
1) + self.eps), dim=-1)
conserved_source = torch.clamp(conserved_source, min=-1.0, max=1.0) # for stability
# (3) Competition & Allocation
sink_allocation = torch.sigmoid(conserved_sink * (float(queries.shape[2]) / float(keys.shape[2])))
source_competition = torch.softmax(conserved_source, dim=-1) * float(keys.shape[2])
# (4) dot product
x = (self.dot_product(queries * sink_incoming[:, :, :, None], # for value normalization
keys,
values * source_competition[:, :, :, None]) # competition
* sink_allocation[:, :, :, None]).transpose(1, 2) # allocation
## (5) Final projection
x = x.reshape(B, L, -1)
x = self.out_projection(x)
x = self.dropout(x)
return x
if __name__ == "__main__":
# A simple case for correctness check
q = torch.randn([2, 7, 32])
k = torch.randn([2, 7, 32])
v = torch.randn([2, 7, 32])
mobile_attn = Mobile_Attention(32, 32, 32, 16)
u = mobile_attn(q, k, v)
print(u.shape)