-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmnist-mlp.py
51 lines (42 loc) · 1.33 KB
/
mnist-mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from src.net import Net
from src.utils import randn, uniform, guass, read_mnist
import numpy as np
import time
inp_dim = 784; hid_dim = 64; out_dim = 10
std = 1e-3; lr = 1e-2; batch = 128
net = Net()
image = net.portal((784,))
keep_prob = net.portal()
target = net.portal((10,))
w1 = net.variable(guass(0., std, (inp_dim, hid_dim)))
b1 = net.variable(np.ones(hid_dim) * .1)
w2 = net.variable(guass(0., std, (hid_dim, out_dim)))
b2 = net.variable(np.ones(out_dim) * .1)
fc1 = net.matmul(image, w1)
bias = net.plus_b(fc1, b1)
relu = net.relu(bias)
dropped = net.dropout(relu, keep_prob)
fc2 = net.matmul(dropped, w2)
bias = net.plus_b(fc2, b2)
loss = net.softmax_crossent(bias, target)
net.optimize(loss, 'sgd', lr)
mnist_data = read_mnist()
s = time.time()
for count in range(30):
batch_num = int(mnist_data.train.num_examples/batch)
for i in range(batch_num):
img, lab = mnist_data.train.next_batch(batch)
loss = net.train([], {
image: img,
target: lab,
keep_prob: .5,
})[0]
print('Epoch {} loss {}'.format(count, loss))
print('Total time elapsed: {}'.format(time.time() - s))
bias_out = net.forward([bias], {
image: mnist_data.test.images,
keep_prob: 1.0})[0]
true_labels = mnist_data.test.labels.argmax(1)
pred_labels = bias_out.argmax(1)
accuracy = np.equal(true_labels, pred_labels).mean()
print('Accuracy on test set', accuracy)