-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathloop.py
91 lines (79 loc) · 3.41 KB
/
loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# obvious variable name for the dataset directory
# (this would be in the same directory as this file.)
dataset_path = "TTBB-durham-02-10-17-sub10"
# optional edits (if needed)
directory_to_cycle_left = "left-images"
directory_to_cycle_right = "right-images"
# set to timestamp to skip forward to, optional (empty for start)
# e.g. set to 1506943191.487683 for the end of the Bailey, just as the vehicle turns
skip_forward_file_pattern = ""
options = {
'crop_disparity' : False, # display full or cropped disparity image
'pause_playback' : False, # pause until key press after each image
'max_disparity' : 128,
'ransac_trials' : 600,
'road_color_thresh': 10, # remove points from roadpts if it isn't in the x most populous colours
'loop': True,
'point_threshold' : 0.05,
'image_tiles' : True, # show all images involved in the process or not
'img_size' : (544,1024),
'threshold_option' : 'previous', # options are: 'previous' or 'mean'
'record_video' : False,
'record_stats' : False,
'video_filename' : 'previous.avi'
}
# ------------------------------------------------------------------------
# Don't edit below this line!
# ------------------------------------------------------------------------
# imports, don't touch them lol
import cv2
import os
import random
import numpy as np
import functions as f
import stereovision as sv
# resolve full directory location of data set for left / right images
path_dir_l = os.path.join(dataset_path, directory_to_cycle_left)
path_dir_r = os.path.join(dataset_path, directory_to_cycle_right)
# get a list of the left image files and sort them (by timestamp in filename)
filelist_l = sorted(os.listdir(path_dir_l))
# check to handle video in the event that the user has requested it in options.
if options['record_video']:
fourcc = cv2.VideoWriter_fourcc(*'MJPG') # cv2.VideoWriter_fourcc() does not exist
video_writer = cv2.VideoWriter(options['video_filename'], fourcc, 8, (1024, 272))
else:
fourcc = None
video_writer = None
# disparity placeholder (for the next loop)
previousDisparity = None
for filename_l in filelist_l:
"""
Here we'll cycle through the files, and finding each stereo pair.
We'll then process them to detect the road surface planes, and compute
the stereo disparity.
"""
# skip forward to start a file we specify by timestamp (if this is set)
if ((len(skip_forward_file_pattern) > 0) and not(skip_forward_file_pattern in filename_l)):
continue
elif ((len(skip_forward_file_pattern) > 0) and (skip_forward_file_pattern in filename_l)):
skip_forward_file_pattern = ""
# get image paths
imgPaths = f.getImagePaths(filename_l, path_dir_l, path_dir_r)
if imgPaths != False:
# load image files
imgL, imgR = f.loadImages(imgPaths)
# compute stereo vision
image, previousDisparity, normal = sv.performStereoVision(imgL, imgR, previousDisparity, options)
# print filenames and normals.
f.printFilenamesAndNormals(filename_l, normal)
# record frame into video if needed.
if options['record_video']:
video_writer.write(image)
else:
print("-- files skipped (perhaps one is missing or not PNG)")
# save video to file.
if options['record_video']:
print("Video saved to:", options['video_filename'])
video_writer.release()
# close all windows
cv2.destroyAllWindows()