-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
217 lines (189 loc) · 5.19 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <bits/stdc++.h>
using namespace std;
class Matrix
{
private:
vector<vector<int>> matrix;
public:
Matrix() {}
Matrix(const Matrix &arg) : matrix(arg.matrix) {}
Matrix(vector<vector<int>> arg) : matrix(arg) {}
~Matrix() {}
void setMatrix(Matrix &arg)
{
this->matrix = arg.matrix;
}
void setMatrix(vector<vector<int>> &arg)
{
this->matrix = arg;
}
vector<vector<int>> getMatrix()
{
return this->matrix;
}
void inputMatrix()
{
int rowSize, colSize;
cout << "Enter row and col size, enter data row wise\n";
cin >> rowSize >> colSize;
matrix.resize(rowSize, vector<int>(colSize));
for (auto &row : matrix)
for (auto &num : row)
cin >> num;
}
void printMatrix()
{
int rowSize = matrix.size(), colSize = 0;
if (rowSize)
colSize = matrix[0].size();
cout << "{\n";
for (int row = 0; row < rowSize - 1; row++)
{
cout << " { ";
for (int col = 0; col < colSize - 1; col++)
{
cout << matrix[row][col] << ", ";
}
cout << matrix[row][colSize - 1] << " },\n";
}
cout << " { ";
for (int col = 0; col < colSize - 1; col++)
{
cout << matrix[rowSize - 1][col] << ", ";
}
cout << matrix[rowSize - 1][colSize - 1] << " }\n";
cout << "}\n";
}
void addMatrix(Matrix &argMatrix)
{
vector<vector<int>> arg = argMatrix.getMatrix();
if (matrix.size() == 0)
{
matrix = arg;
return;
}
if (arg.size() == 0)
{
return;
}
if (matrix.size() != arg.size() || matrix[0].size() != arg[0].size())
{
cout << "Error: Addition not possible, dimensions does not match\n";
return;
}
int rowSize = matrix.size(), colSize = matrix[0].size();
for (int row = 0; row < rowSize; row++)
{
for (int col = 0; col < colSize; col++)
{
matrix[row][col] += arg[row][col];
}
}
}
void subtractMatrix(Matrix &argMatrix)
{
vector<vector<int>> arg = argMatrix.getMatrix();
if (matrix.size() == 0)
{
matrix = arg;
return;
}
if (arg.size() == 0)
{
return;
}
if (matrix.size() != arg.size() || matrix[0].size() != arg[0].size())
{
cout << "Error: Subtraction not possible, dimensions does not match\n";
return;
}
int rowSize = matrix.size(), colSize = matrix[0].size();
for (int row = 0; row < rowSize; row++)
{
for (int col = 0; col < colSize; col++)
{
matrix[row][col] -= arg[row][col];
}
}
}
void multiplyMatrix(Matrix &argMatrix)
{
vector<vector<int>> arg = argMatrix.getMatrix();
if (matrix.size() == 0 || matrix[0].size() == 0 || arg.size() == 0 || arg[0].size() == 0)
{
cout << "Error: multiplication not possible, some dimension is zero\n";
return;
}
int rowSize = matrix.size(), colSize = matrix[0].size();
int argRowSize = arg.size(), argColSize = arg[0].size();
if (colSize != argRowSize)
{
cout << "Error: multiplication not possible, row size of first matrix must be equal to col size of second matrix\n";
return;
}
vector<vector<int>> tempVec(rowSize, vector<int>(argColSize, 0));
for (int rowA = 0; rowA < rowSize; rowA++)
{
for (int colB = 0; colB < argColSize; colB++)
{
for (int temp = 0; temp < colSize; temp++)
{
tempVec[rowA][colB] += matrix[rowA][temp] * arg[temp][colB];
}
}
}
matrix = tempVec;
}
void multiplyMatrix(int &value)
{
for(auto&vec:matrix)
{
for(auto&num:vec)num*=value;
}
}
bool isEqual(const Matrix &arg)
{
return this->matrix == arg.matrix;
}
bool operator==(const Matrix &arg)
{
return this->matrix == arg.matrix;
}
void setIdentity(int size)
{
matrix.resize(size,vector<int>(size,0));
for(int row=0;row<size;row++)
{
matrix[row][row]=1;
}
}
};
int main()
{
Matrix m({{1,1,1},{1,2,3}});
m.printMatrix();
int v=3;
m.multiplyMatrix(v);
m.printMatrix();
/*
{
{ 1, 1, 1 },
{ 1, 2, 3 }
}
{
{ 3, 3, 3 },
{ 3, 6, 9 }
}
*/
return 0;
}
/* TODO
Slicing
Scalar multiplication/addition/sub operator syntax
Matrix multiplication/addition/sub operator syntax
Determinant value
Inverse of matrix
Transpose of matrix
division operations based on : A/B = A × (1/B) = A × B^(-1)
solving system of equations
*/