-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodel.py
97 lines (71 loc) · 3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import cv2
import tensorflow as tf
from utils import *
EMOTIONS = ['angry', 'disgusted', 'fearful', 'happy', 'sad', 'surprised', 'neutral']
def deepnn(x):
x_image = tf.reshape(x, [-1, 48, 48, 1])
# conv1
W_conv1 = weight_variables([5, 5, 1, 64])
b_conv1 = bias_variable([64])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# pool1
h_pool1 = maxpool(h_conv1)
# norm1
norm1 = tf.nn.lrn(h_pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
# conv2
W_conv2 = weight_variables([3, 3, 64, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
norm2 = tf.nn.lrn(h_conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
h_pool2 = maxpool(norm2)
# Fully connected layer
W_fc1 = weight_variables([12 * 12 * 64, 384])
b_fc1 = bias_variable([384])
h_conv3_flat = tf.reshape(h_pool2, [-1, 12 * 12 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1)
# Fully connected layer
W_fc2 = weight_variables([384, 192])
b_fc2 = bias_variable([192])
h_fc2 = tf.matmul(h_fc1, W_fc2) + b_fc2
# linear
W_fc3 = weight_variables([192, 7])
b_fc3 = bias_variable([7])
y_conv = tf.add(tf.matmul(h_fc2, W_fc3), b_fc3)
return y_conv
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxpool(x):
return tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variables(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def train_model(train_data):
fer2013 = input_data(train_data)
max_train_steps = 30001
x = tf.placeholder(tf.float32, [None, 2304])
y_ = tf.placeholder(tf.float32, [None, 7])
y_conv = deepnn(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
for step in range(max_train_steps):
batch = fer2013.train.next_batch(25)
if step % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1]})
print('step %d, training accuracy %g' % (step, train_accuracy))
if step + 1 == max_train_steps:
saver.save(sess, './models/emotion_model', global_step=step + 1)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
def image_to_tensor(image):
tensor = np.asarray(image).reshape(-1, 2304) * 1 / 255.0
return tensor