-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustomplot.py
788 lines (664 loc) · 30 KB
/
customplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
import collections
import fractions
import io
import matplotlib as mpl
import matplotlib.patches as mpatches
import matplotlib.projections as mprojections
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
import platform
import sys
import threading
import time
import weakref
try:
import curses
has_curses = True
except ImportError:
has_curses = False
_gid = weakref.WeakKeyDictionary()
def iprint(items, columns=3, method=str.center):
'''
Display an iterable in neat columns.
:param items: An iterable whose every element can be stringified.
:param columns: Number of columns to arrange `items` in.
:param method: One of `str.ljust`, `str.center` and `str.rjust`. Align text
left, centre and right respectively.
'''
if method not in {str.ljust, str.center, str.rjust}:
raise ValueError('Argument `method` must be one of `str.ljust`, `str.center` and `str.rjust`.')
# Convert the iterable into a two-dimensional list.
items = [*map(str, items)]
len_items = len(items)
required = columns - len_items % columns
if required < columns:
items.extend([''] * required)
len_items += required
rows = len_items // columns
items = [items[i :: rows] for i in range(rows)]
# The required width of a column is the width of the longest string in that
# column plus some extra spaces for padding.
widths = [max(len(row[i]) for row in items) + 2 for i in range(columns)]
for row in items:
for (r, width) in zip(row, widths):
print(method(r, width, ' '), end='')
print()
def _labels_and_ticks(first, last, step, symbol=r'\pi', symval=np.pi):
r'''
Create a list of LaTeX-formatted strings and a NumPy array of floats for values
from one rational multiple of π (or some other number) to another.
>>> _labels_and_ticks(-1, 5, 2)
(['$-\\pi$', '$\\pi$', '$3\\pi$', '$5\\pi$'], array([-3.14159265, 3.14159265, 9.42477796, 15.70796327]))
>>> _labels_and_ticks(-1, -1 / 4, 1 / 4)
(['$-\\pi$', '$-\\dfrac{3\\pi}{4}$', '$-\\dfrac{\\pi}{2}$', '$-\\dfrac{\\pi}{4}$'], array([-3.14159265, -2.35619449, -1.57079633, -0.78539816]))
>>> _labels_and_ticks(-2, 2, 1)
(['$-2\\pi$', '$-\\pi$', '$0$', '$\\pi$', '$2\\pi$'], array([-6.28318531, -3.14159265, 0. , 3.14159265, 6.28318531]))
>>> _labels_and_ticks(2, 4, 1 / 2, symbol=r'\pi/\omega', symval=np.pi / 2)
(['$\\dfrac{2\\pi}{\\omega}$', '$\\dfrac{5\\pi}{2\\omega}$', '$\\dfrac{3\\pi}{\\omega}$', '$\\dfrac{7\\pi}{2\\omega}$', '$\\dfrac{4\\pi}{\\omega}$'], array([3.14159265, 3.92699082, 4.71238898, 5.49778714, 6.28318531]))
:param first: Float; coefficient of the first element in the list of strings.
:param last: Float; coefficient of the last element in the list of strings.
:param step: Float; coefficient of the difference between any two consecutive
elements in the list of strings.
:param symbol: LaTeX code or two slash-separated LaTeX codes of the symbol or
symbols to use instead of π.
:param symval: Float; numerical value represented by `symbol`.
:return: Tuple of a list of labels and a NumPy array of the respective values.
'''
try:
[s_num, s_den] = symbol.split('/')
except ValueError:
s_num = symbol
s_den = '1'
coefficients = np.arange(first, last + step / 2, step)
# Pre-allocate space for the list because its length is known. As a result,
# this loop will run approximately twice as fast as it would if items were
# repeatedly appended to the list.
labels = [None] * len(coefficients)
for (i, coefficient) in enumerate(coefficients):
value = fractions.Fraction(coefficient).limit_denominator()
num = value.numerator
den = value.denominator
# Case 1: `coefficient` is zero.
if not num:
labels[i] = '$0$'
continue
# Case 2: `coefficient` is non-zero. Build the string which will be the
# next item in `labels`. Create a list to store the different parts of
# the string, and join those parts.
builder = ['$']
if num < 0:
builder.append('-')
num = abs(num)
is_fraction = den != 1 or s_den != '1'
if is_fraction:
builder.append(r'\dfrac{')
if num != 1:
builder.append(f'{num}')
if s_num != '1' or num == 1:
builder.append(s_num)
if is_fraction:
builder.append(r'}{')
if den != 1:
builder.append(f'{den}')
if s_den != '1':
builder.append(s_den)
if is_fraction:
builder.append(r'}')
builder.append('$')
labels[i] = ''.join(builder)
return (labels, symval * coefficients)
def _get_axes_size_in_inches(ax):
bbox = ax.get_window_extent()
transformed = bbox.transformed(ax.figure.dpi_scale_trans.inverted())
return (transformed.width, transformed.height)
def _schedule_draw_polar_patches(event):
'''
Set the flag in the global weak key dictionary indicating that the polar
patches in one or more polar axes in this figure have to be updated.
This function is triggered when the canvas is resized. It is not possible to
actually update the polar patches here, because that can only be done after the
resize operation has been completed.
:param event: Matplotlib event (the event which triggered this function).
'''
_gid[event.canvas.figure][1] = True
def _draw_polar_patches(event):
'''
Draw arrow patches to show the angular and radial axes of coordinates of all
polar plots in the figure. The sizes of these arrow patches must be independent
of the size of the figure. Hence, this function is connected to the resize
event of the appropriate Matplotlib figure canvas instance, so that the arrows
can be redrawn when the canvas is resized.
Finally, labels on the axes of coordinates are made visible.
:param event: Matplotlib event (the event which triggered this function).
'''
canvas = event.canvas
fig = canvas.figure
[gid, needs_redraw] = _gid[fig]
if not needs_redraw:
return
_gid[fig][1] = False
for ax in fig.axes:
if ax.name != 'polar':
continue
# Remove the previously added arrow patches (if any). Do not remove any
# other patches. Since the original list (namely `ax.patches`) gets
# mutated whenever any patch is removed, make a shallow copy of it.
for patch in ax.patches[:]:
if patch.get_gid() == gid:
patch.remove()
(ax_width_inches, ax_height_inches) = _get_axes_size_in_inches(ax)
# This is the centre of the arrow patches in axes coordinates. (Axes
# coordinates: [0, 0] is the lower left corner of the Matplotlib axes,
# and [1, 1], the upper right.)
x = 1 + 0.8 / ax_width_inches
y = 0.5
arrow_height_inches = 1
ht = arrow_height_inches / ax_height_inches
xlabel_offset_inches = 0.175
wd = xlabel_offset_inches / ax_width_inches
kwargs = {'posA': (x, y - ht / 2),
'posB': (x, y + ht / 2),
'arrowstyle': 'Simple, tail_width=0.6, head_width=4, head_length=8',
'connectionstyle': 'arc3, rad=0.15',
'clip_on': False,
'transform': ax.transAxes,
'gid': gid}
angular = mpatches.FancyArrowPatch(**kwargs)
ax.add_patch(angular)
ax.xaxis.set_label_coords(x + wd, y + ht / 2)
arrow_length_inches = 0.6
wd = arrow_length_inches / ax_width_inches
ylabel_offset_inches = -0.25
ht = ylabel_offset_inches / ax_height_inches
kwargs = {'posA': (x - wd / 3, y),
'posB': (x + 2 * wd / 3, y),
'arrowstyle': 'Simple, tail_width=0.6, head_width=4, head_length=8',
'clip_on': False,
'transform': ax.transAxes,
'gid': gid}
radial = mpatches.FancyArrowPatch(**kwargs)
ax.add_patch(radial)
ax.yaxis.set_label_coords(x + wd / 2, y + ht)
ax.xaxis.label.set_visible(True)
ax.yaxis.label.set_visible(True)
canvas.draw_idle()
def sanitise(y, maximum_diff=5):
'''
At a point of essential or jump discontinuity, Matplotlib draws a vertical line
automatically. This vertical line joins the two points around the
discontinuity. Traditionally, in maths, such lines are not drawn. Hence, they
must removed from the plot. This is achieved by setting the function values at
the points of discontinuity to NaN.
:param y: Iterable; values of the discontinuous function.
:param maximum_diff: Maximum permissible derivative of `y`.
:return: NumPy array with NaN at the points of discontinuity.
'''
y = np.array(y)
points_of_discontinuity = np.abs(np.r_[[0], np.diff(y)]) > maximum_diff
y[points_of_discontinuity] = np.nan
return y
def limit(ax, coordaxis=None, symbolic=False, s=r'\pi', v=np.pi, first=None, last=None, step=None):
'''
Limit the specified axis of coordinates to the range given. Draw grid lines as
indicated.
In three-dimensional plots, these limits on the axes of coordinates are not
respected. Matplotlib automatically modifies them by a small amount (the
relevant code can be found in the `_get_coord_info' method of
mpl_toolkits/mplot3d/axis3d.py as of version 3.3.4 of Matplotlib). If you don't
like this, you must modify the source code.
:param ax: Matplotlib axes.
:param coordaxis: Which axis of coordinates to limit: 'x', 'y' or 'z'.
:param symbolic: Whether ticks are at rational multiples of `v`.
:param s: LaTeX code or two slash-separated LaTeX codes of the symbol or
symbols to use instead of π.
:param v: Numerical value represented by `s`.
:param first: Float; tick start point.
:param last: Float; tick end point.
:param step: Float; tick spacing.
:return: Flag whether this function did something or returned early.
'''
if coordaxis == 'z' and ax.name != '3d':
return False
labels_getter = getattr(ax, f'get_{coordaxis}ticklabels')
labels_setter = getattr(ax, f'set_{coordaxis}ticklabels')
limits_setter = getattr(ax, f'set_{coordaxis}lim')
ticks_getter = getattr(ax, f'get_{coordaxis}ticks')
ticks_setter = getattr(ax, f'set_{coordaxis}ticks')
axis = getattr(ax, f'{coordaxis}axis')
# Case 1: use symbolic tick labels.
if symbolic:
if any(arg is None for arg in [first, last, step]):
raise ValueError('If argument "symbolic" is True, arguments "first", "last" and "step" must not be None.')
(labels, ticks) = _labels_and_ticks(first, last, step, s, v)
if ax.name == 'polar':
# Does the angular axis go from 0 to 2π? If yes, remove the last
# tick and label (i.e. the ones for 2π). Otherwise, they will
# overlap with the first tick and label (i.e. the ones for 0).
if coordaxis == 'x' and first == 0 and np.isclose(last * v, 2 * np.pi):
(labels, ticks) = (labels[: -1], ticks[: -1])
# Remove the last label on the radial axis. Remove the first label
# if it marks zero.
elif coordaxis == 'y':
labels[-1] = ''
if not first:
labels[0] = ''
ticks_setter(ticks)
labels_setter(labels)
limits_setter(v * first, v * last)
# If the x-axis labels will contain fractions, adjust the tick padding.
if coordaxis == 'x':
if not all(t == int(t) for t in [first, last, step]):
if ax.name == 'rectilinear':
ax.tick_params(axis=coordaxis, which='major', pad=mpl.rcParams['xtick.major.pad'] * 3.75)
for label in labels_getter():
label.set_verticalalignment('baseline')
elif ax.name == 'polar':
ax.tick_params(axis=coordaxis, which='major', pad=mpl.rcParams['xtick.major.pad'] * 2)
for label in labels_getter():
label.set_verticalalignment('center')
else:
ax.tick_params(axis=coordaxis, which='major', pad=mpl.rcParams['xtick.major.pad'])
for label in labels_getter():
label.set_verticalalignment('top')
# Case 2: allow tick labels to be set automatically.
else:
if all(arg is not None for arg in [first, last, step]):
ticks_setter(np.arange(first, last + step / 2, step))
if all(arg is not None for arg in [first, last]):
limits_setter(first, last)
# Generate the axis tick labels in case they were erased because of a
# previous call to this function.
if ax.name in {'rectilinear', '3d'} or ax.name == 'polar' and coordaxis == 'y':
axis.set_major_formatter(mticker.ScalarFormatter())
elif ax.name == 'polar' and coordaxis == 'x':
axis.set_major_formatter(mprojections.polar.ThetaFormatter())
if coordaxis == 'x':
if ax.name == 'polar':
ax.tick_params(axis=coordaxis, which='major', pad=mpl.rcParams['xtick.major.pad'] * 1.5)
for label in labels_getter():
label.set_verticalalignment('center')
else:
ax.tick_params(axis=coordaxis, which='major', pad=mpl.rcParams['xtick.major.pad'])
for label in labels_getter():
label.set_verticalalignment('top')
if ax.name == 'polar':
ax.figure.canvas.draw()
ticks = ticks_getter()
labels = [label.get_text() for label in labels_getter()]
# Just like in case 1. With the difference that `ticks` is used
# instead of `first` and `last` to check the limits.
if coordaxis == 'x' and not ticks[0] and np.isclose(ticks[-1], 2 * np.pi):
labels, ticks = labels[: -1], ticks[: -1]
ticks_setter(ticks)
labels_setter(labels)
# Again, just like case 1.
elif coordaxis == 'y':
labels[-1] = ''
if not ticks[0]:
labels[0] = ''
ticks_setter(ticks)
labels_setter(labels)
return True
def polish(ax, labels=None, axlines=True, title=None, suptitle=None, windowtitle=None):
'''
Label the axes of coordinates. Give the plot a title. Add a legend. Draw grid
lines. Make some minor appearance enhancements.
:param ax: Matplotlib axes.
:param labels: Tuple of strings to label the axes of coordinates.
:param axlines: Whether to draw thick lines to represent the axes of
coordinates.
:param title: Title of `ax`.
:param suptitle: Title of the figure `ax` is in.
:param windowtitle: Title of the window `ax` is in. If this is 0, the title
will be set to a string generated using the Unix time.
'''
if labels is None:
if ax.name in {'rectilinear', '3d'}:
labels = ('$x$', '$y$', '$z$')
elif ax.name == 'polar':
labels = (r'$\theta$', '$r$')
if ax.name == '3d':
kwargs = {'which': 'major',
'labelsize': 'small',
'length': 4,
'direction': 'in'}
ax.xaxis.set_tick_params(pad=1, **kwargs)
ax.yaxis.set_tick_params(pad=1, **kwargs)
ax.zaxis.set_tick_params(pad=1, **kwargs)
ax.set_facecolor('white')
for label, coordaxis in zip(labels, 'xyz'):
getattr(ax, f'set_{coordaxis}label')(label, labelpad=10)
elif ax.name == 'rectilinear':
if axlines:
kwargs = {'alpha': 0.6, 'linewidth': mpl.rcParams['axes.linewidth']}
if mpl.rcParams['axes.edgecolor'] == '#CCCCCC':
kwargs['color'] = '#BBBBBB'
else:
kwargs['color'] = 'gray'
ax.axhline(**kwargs)
ax.axvline(**kwargs)
ax.set_xlabel(labels[0])
ax.set_ylabel(labels[1], rotation=90)
# The labels of the polar axes of coordinates will initially not be
# visible. They will be made visible after they have been placed in their
# correct locations by a callback.
elif ax.name == 'polar':
ax.set_rlabel_position(0)
ax.set_xlabel(labels[0], visible=False)
ax.set_ylabel(labels[1], rotation=0, visible=False)
# Minor grid lines don't look good in three-dimensional plots.
if ax.name in {'rectilinear', 'polar'}:
ax.grid(True, which='major', linewidth=0.5, linestyle=':')
ax.grid(True, which='minor', linewidth=0.0625, linestyle='-')
ax.minorticks_on()
elif ax.name == '3d':
ax.grid(True, which='major', linewidth=mpl.rcParams['grid.linewidth'], linestyle='-')
# Key a unique ID with the figure instance in the global weak key
# dictionary. Doing so ensures that the following operations are performed
# only once.
fig = ax.figure
canvas = fig.canvas
if fig not in _gid:
timefmt = '%Y-%m-%d_%H-%M-%S'
_gid[fig] = [f'cp_{time.strftime(timefmt)}_{np.random.randint(100, 999)}', True]
canvas.mpl_connect('resize_event', _schedule_draw_polar_patches)
canvas.mpl_connect('axes_enter_event', _draw_polar_patches)
canvas.mpl_connect('axes_leave_event', _draw_polar_patches)
canvas.mpl_connect('figure_enter_event', _draw_polar_patches)
canvas.mpl_connect('figure_leave_event', _draw_polar_patches)
if title is not None:
ax.set_title(title)
if suptitle is not None:
fig.suptitle(suptitle)
if windowtitle == 0:
canvas.manager.set_window_title(_gid[fig][0])
elif windowtitle is not None:
canvas.manager.set_window_title(windowtitle)
if ax.get_legend_handles_labels() != ([], []):
kwargs = {'loc': 'best'}
if ax.name == 'polar':
kwargs['loc'] = 'lower left'
kwargs['bbox_to_anchor'] = (1, 1)
ax.legend(**kwargs)
def aspect(ax, ratio=0):
'''
Set the aspect ratio. If `ax` is being used for two-dimensional Cartesian
plots, the ratio of the scales on the x-axis and y-axis will be set to `ratio`
(if it is non-zero). If `ax` is being used for two-dimensional polar plots,
nothing happens.
For three-dimensional plots, an aspect ratio does not make sense, because there
are three axes of coordinates. Hence, in this case, the scales on those axes
will be made equal if `ratio` is any non-zero number.
:param ax: Matplotlib axes.
:param ratio: Ratio of the scale on the x-axis to that on the y-axis.
'''
if not ratio:
return
if ax.name == 'rectilinear':
ax.set_aspect(aspect=ratio, adjustable='box')
elif ax.name == '3d':
limits = np.array([getattr(ax, f'get_{coordaxis}lim')() for coordaxis in 'xyz'])
ax.set_box_aspect(np.ptp(limits, axis=1))
class _Interactive(threading.Thread):
'''
Interactively adjust some plot elements of a Matplotlib axes instance using a
curses GUI running in a separate thread.
'''
def __init__(self, fig, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fig = fig
self.canvas = fig.canvas
self.manager = fig.canvas.manager
self.page_num = 0
self.pages = len(fig.axes)
self.data = [{} for _ in fig.axes]
self.headers = ['Symbolic', 'Symbol', 'Value', 'Limits', 'Label']
self.coordaxes = ['x', 'y', 'z']
# Initialise the contents with some useful defaults.
for i in range(self.pages):
for coordaxis in self.coordaxes:
self.data[i][f'Symbolic,{coordaxis}'] = ''
self.data[i][f'Symbol,{coordaxis}'] = r'\pi'
self.data[i][f'Value,{coordaxis}'] = f'{np.pi}'
self.data[i][f'Limits,{coordaxis}'] = ''
try:
self.data[i][f'Label,{coordaxis}'] = getattr(self.fig.axes[i], f'get_{coordaxis}label')()
except AttributeError:
self.data[i][f'Label,{coordaxis}'] = ''
self.redirect_streams()
def redirect_streams(self):
sys.stderr = self.tmp_stderr = io.StringIO()
def restore_streams(self):
value = self.tmp_stderr.getvalue()
self.tmp_stderr.close()
sys.stderr = sys.__stderr__
sys.stderr.write(value)
def run(self):
curses.wrapper(self.main)
def join(self, *args):
super().join(*args)
self.restore_streams()
def draw_GUI(self):
self.stdscr.erase()
(self.height, self.width) = self.stdscr.getmaxyx()
row = 0
# Title identifying the figure.
title = f'Options for {self.manager.get_window_title()} at 0x{id(self.fig):X}'
self.stdscr.addstr(row, 0, title.center(self.width), curses.A_BOLD)
row += 1
# Subtitle identifying the axes.
subtitle = f'Axes {self.page_num + 1}/{self.pages}: {self.fig.axes[self.page_num].get_title()}'
self.stdscr.addstr(row, 0, subtitle.center(self.width), curses.A_BOLD)
row += 2
# Calculations for drawing the margins.
header_column_width = 10 + (self.width - 10) % 3
self.column_width = (self.width - header_column_width - 3) // 3
self.dividers = [header_column_width + i * (self.column_width + 1) for i in range(3)]
# Margins.
self.stdscr.addstr(row, 0, '─' * self.width)
self.stdscr.addstr(row + 2, 0, '─' * self.width)
self.stdscr.addstr(row + 8, 0, '─' * self.width)
box_chars = collections.defaultdict(lambda: '│', {0: '┬', 2: '┼', 8: '┴'})
for i in range(9):
for d in self.dividers:
self.stdscr.addstr(row + i, d, box_chars[i])
row += 1
# Headers.
for d, coordaxis in zip(self.dividers, self.coordaxes):
self.stdscr.addstr(row, d + 1, f'{coordaxis} axis'.center(self.column_width), curses.A_BOLD)
row += 2
self.start_row = row
for i, header in enumerate(self.headers):
self.stdscr.addstr(row + i, 0, header.center(header_column_width), curses.A_BOLD)
# Write the current contents to the GUI.
for i, header in enumerate(self.headers):
for d, coordaxis in zip(self.dividers, self.coordaxes):
content = self.data[self.page_num][f'{header},{coordaxis}']
self.stdscr.addstr(self.start_row + i, d + 1, content.center(self.column_width))
# Usage instructions.
self.stdscr.addstr(self.height - 5, 0, 'Page Down ', curses.A_BOLD)
self.stdscr.addstr('Next Axes')
self.stdscr.addstr(self.height - 4, 0, 'Page Up ', curses.A_BOLD)
self.stdscr.addstr('Previous Axes')
self.stdscr.addstr(self.height - 3, 0, 'Arrow Keys ', curses.A_BOLD)
self.stdscr.addstr('Move Cursor')
self.stdscr.addstr(self.height - 2, 0, 'Enter ', curses.A_BOLD)
self.stdscr.addstr('Update Plot')
self.stdscr.addstr(self.height - 1, 0, 'Escape ', curses.A_BOLD)
self.stdscr.addstr('Quit')
self.stdscr.move(self.start_row, self.dividers[0] + 1)
def process_keystroke(self, k):
'''
Whenever a valid key is pressed, perform the appropriate action.
:param k: Code of the key which was pressed.
'''
if k is None:
return
# Resize event.
if k == curses.KEY_RESIZE:
self.draw_GUI()
return
(cursor_y, cursor_x) = self.stdscr.getyx()
# Arrow keys.
if k in {curses.KEY_UP, curses.KEY_DOWN, curses.KEY_LEFT, curses.KEY_RIGHT}:
if k == curses.KEY_UP and cursor_y > self.start_row:
cursor_y -= 1
elif k == curses.KEY_DOWN and cursor_y < self.start_row + 4:
cursor_y += 1
elif k == curses.KEY_LEFT and cursor_x > self.dividers[0] + 1:
cursor_x -= 1
elif k == curses.KEY_RIGHT and cursor_x < self.width - 1:
cursor_x += 1
self.stdscr.move(cursor_y, cursor_x)
return
# Home and End keys.
if k == curses.KEY_HOME:
if cursor_x > self.dividers[2] + 1:
self.stdscr.move(cursor_y, self.dividers[2] + 1)
elif cursor_x > self.dividers[1] + 1:
self.stdscr.move(cursor_y, self.dividers[1] + 1)
else:
self.stdscr.move(cursor_y, self.dividers[0] + 1)
return
if k == curses.KEY_END:
if cursor_x < self.dividers[1]:
self.stdscr.move(cursor_y, self.dividers[1])
elif cursor_x < self.dividers[2]:
self.stdscr.move(cursor_y, self.dividers[2])
else:
self.stdscr.move(cursor_y, self.width - 1)
return
# Page Up and Page Down keys.
if k in {curses.KEY_NPAGE, curses.KEY_PPAGE}:
if k == curses.KEY_NPAGE:
self.page_num = (self.page_num + 1) % self.pages
else:
self.page_num = (self.page_num - 1) % self.pages
self.draw_GUI()
self.stdscr.move(cursor_y, cursor_x)
return
# Backspace key.
if (k == curses.KEY_BACKSPACE
and self.start_row <= cursor_y < self.start_row + 5
and cursor_x > self.dividers[0] + 1
and cursor_x != self.dividers[1] + 1
and cursor_x != self.dividers[2] + 1):
self.stdscr.addstr(cursor_y, cursor_x, '\b \b')
return
# A subset of the set of printable characters.
c = chr(k)
if (c in 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' '0123456789' ' \\$.+-*/=(){}_^'
and self.start_row <= cursor_y < self.start_row + 5
and cursor_x > self.dividers[0]
and cursor_x != self.dividers[1]
and cursor_x != self.dividers[2]
and cursor_x < self.width - 1):
self.stdscr.addstr(cursor_y, cursor_x, c)
return
# Enter key. Write the data in the GUI to the dictionary and update the
# plot.
if k in {curses.KEY_ENTER, ord('\n'), ord('\r')}:
for i, header in enumerate(self.headers):
for d, coordaxis in zip(self.dividers, self.coordaxes):
self.data[self.page_num][f'{header},{coordaxis}'] = self.stdscr.instr(
self.start_row + i,
d + 1,
self.column_width).decode().strip()
self.stdscr.move(cursor_y, cursor_x)
self.update()
return
def update(self):
'''
Update the Matplotlib axes using the information entered in the GUI.
'''
ax = self.fig.axes[self.page_num]
for coordaxis in self.coordaxes:
lbl = self.data[self.page_num][f'Label,{coordaxis}']
try:
getattr(ax, f'set_{coordaxis}label')(lbl)
except AttributeError:
pass
try:
(first, last, step) = (float(eval(t, {'__builtins__': None}))
for t in self.data[self.page_num][f'Limits,{coordaxis}'].split())
except (SyntaxError, TypeError, ValueError, ZeroDivisionError):
continue
symbolic = bool(self.data[self.page_num][f'Symbolic,{coordaxis}'])
s = self.data[self.page_num][f'Symbol,{coordaxis}']
if not s:
symbolic = False
try:
v = float(eval(self.data[self.page_num][f'Value,{coordaxis}'], {'__builtins__': None}))
except (SyntaxError, TypeError, ValueError, ZeroDivisionError):
v = 0
symbolic = False
limit(ax, coordaxis, symbolic, s, v, first, last, step)
self.canvas.draw_idle()
def main(self, stdscr):
'''
Implement the main GUI loop.
'''
self.stdscr = stdscr
stdscr.refresh()
self.draw_GUI()
k = None
while True:
self.process_keystroke(k)
stdscr.refresh()
# Exit if the Escape key is pressed.
k = stdscr.getch()
if k == 27:
return
if self.fig.number not in plt.get_fignums():
message = ('Cannot update a figure which has been closed.')
raise RuntimeWarning(message)
def _maximise(fig):
'''
Maximise a figure window. (This is not the same as going full-screen.)
:param fig: Matplotlib figure.
'''
backend = mpl.get_backend()
manager = fig.canvas.manager
if backend in {'TkAgg', 'TkCairo'}:
if platform.system() in {'Darwin', 'Windows'}:
manager.window.state('zoomed')
else: # 'Linux'
manager.window.attributes('-zoomed', True)
elif backend in {'GTK3Agg', 'GTK3Cairo'}:
manager.window.maximize()
elif backend in {'WXAgg', 'WXCairo'}:
fig.show()
manager.frame.Maximize(True)
elif backend in {'Qt5Agg', 'Qt5Cairo'}:
manager.window.showMaximized()
def show(fig=None):
'''
Display one or more figures.
If this function is called without arguments, it is similar to calling
`matplotlib.pyplot.show`: all figures will be displayed.
If this function is called with an existing figure as an argument, that figure
will be displayed, along with an interactive GUI, which can be used to
manipulate some plot elements of all axes in said figure. This GUI will be
emulated in the terminal, so ensure that you don't write anything to standard
output while the GUI is active. Using this feature requires that curses be
installed.
:param fig: Matplotlib figure.
'''
if fig is None:
figs = map(plt.figure, plt.get_fignums())
else:
figs = [fig]
for _fig in figs:
_maximise(_fig)
if fig is None:
plt.show()
return
if not has_curses:
print('The curses module could not be imported, so the interactive plotting feature is unavailable.')
plt.show()
return
interactive = _Interactive(fig)
interactive.start()
plt.show()
interactive.join()