-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataset-example.toml
58 lines (45 loc) · 1.4 KB
/
dataset-example.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Lora training is basing on the method of DreamBooth+Caption(without using class_images to aviod over-fitting). Besides DreamBooth+Caption, Lora can also use other methods, such as DreamBooth+identifier+class and classic text2image fine tuning. Detailed info you can refer to https://github.com/kohya-ss/sd-scripts/blob/main/train_README-ja.md
[general]
enable_bucket = true
# DreamBooth caption based datasets
[[datasets]]
resolution = 512
batch_size = 2
shuffle_caption = true
caption_extension = '.txt'
keep_tokens = 0
[[datasets.subsets]]
image_dir = './images/sample1'
num_repeats = 10
# [[datasets.subsets]]
# image_dir = './images/sample2'
# num_repeats = 10
# [[datasets.subsets]]
# is_reg = true
# image_dir = './images/reg'
# class_tokens = 'girl'
# num_repeats = 1
# DreamBooth class+identifier based datasets
#[[datasets]]
#resolution = 512
#batch_size = 2
# [[datasets.subsets]]
# image_dir = './images/sample1'
# class_tokens = 'wta girl'
# num_repeats = 10
# [[datasets.subsets]]
# image_dir = './images/sample2'\
# class_tokens = 'zyl girl'
# num_repeats = 10
# [[datasets.subsets]]
# is_reg = true
# image_dir = './images/reg'
# class_tokens = 'girl'
# num_repeats = 1
# Classic fine tuning based dataset
#[[datasets]]
#resolution = [768, 768]
#batch_size = 2
# [[datasets.subsets]]
# image_dir = './images/sample3'
# metadata_file = './images/sample3/xxx_md.json'