View source on GitHub |
This class is a trainable wrapper of Dynamic Embedding,
and the key role is recording the map relation between params and ids. inheriting from the ResourceVariable make it trainable.
__init__(
params,
ids,
max_norm,
*args,
**kwargs
)
Creates an empty TrainableWrapper
object.©
Creates a group of tables placed on devices, the type of its keys and values are specified by key_dtype and value_dtype, respectively.
params
: A dynamic_embedding.Variable instance.ids
: A tensor with any shape as same dtype of params.key_dtype.max_norm
: If notNone
, each values is clipped if its l2-norm is larger than this value. other parameters is same with ResourceVariable.
A TrainableWrapper
object which is a subclass of ResourceVariable.
Returns the constraint function associated with this variable.
The constraint function that was passed to the variable constructor.
Can be None
if no constraint was passed.
The op responsible for initializing this variable.
The device this variable is on.
The dtype of this variable.
The Graph
of this variable.
The handle by which this variable can be accessed.
Returns the Tensor used as the initial value for the variable.
The op responsible for initializing this variable.
The name of the handle for this variable.
The op for this variable.
The shape of this variable.
__abs__(
x,
name=None
)
Computes the absolute value of a tensor.
Given a tensor of integer or floating-point values, this operation returns a tensor of the same type, where each element contains the absolute value of the corresponding element in the input.
Given a tensor x
of complex numbers, this operation returns a tensor of type
float32
or float64
that is the absolute value of each element in x
. For
a complex number \(a + bj\), its absolute value is computed as
\(\sqrt{a^2 + b^2}\).
>>> # real number
>>> x = tf.constant([-2.25, 3.25])
>>> tf.abs(x)
<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([2.25, 3.25], dtype=float32)>
>>> # complex number
>>> x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
>>> tf.abs(x)
<tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[5.25594901],
[6.60492241]])>
x
: ATensor
orSparseTensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
orcomplex128
.name
: A name for the operation (optional).
A Tensor
or SparseTensor
of the same size, type and sparsity as x
,
with absolute values. Note, for complex64
or complex128
input, the
returned Tensor
will be of type float32
or float64
, respectively.
__add__(
a,
*args,
**kwargs
)
The operation invoked by the Tensor.__add__
operator.
Purpose in the API:
This method is exposed in TensorFlow's API so that library developers
can register dispatching for `Tensor.__add__` to allow it to handle
custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does
appear in TensorFlow's generated documentation.
x
: The left-hand side of the+
operator.y
: The right-hand side of the+
operator.name
: an optional name for the operation.
The result of the elementwise +
operation.
__and__(
a,
*args,
**kwargs
)
__bool__()
__div__(
a,
*args,
**kwargs
)
Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide.
NOTE: Prefer using the Tensor division operator or tf.divide which obey Python 3 division operator semantics.
This function divides x
and y
, forcing Python 2 semantics. That is, if x
and y
are both integers then the result will be an integer. This is in
contrast to Python 3, where division with /
is always a float while division
with //
is always an integer.
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric type.name
: A name for the operation (optional).
x / y
returns the quotient of x and y.
__eq__(other)
Compares two variables element-wise for equality.
__floordiv__(
a,
*args,
**kwargs
)
Divides x / y
elementwise, rounding toward the most negative integer.
The same as tf.compat.v1.div(x,y)
for integers, but uses
tf.floor(tf.compat.v1.div(x,y))
for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y
floor division in Python 3 and in Python 2.7 with
from __future__ import division
.
x
and y
must have the same type, and the result will have the same type
as well.
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric type.name
: A name for the operation (optional).
x / y
rounded down.
TypeError
: If the inputs are complex.
__ge__(
x,
y,
name=None
)
Returns the truth value of (x >= y) element-wise.
NOTE: math.greater_equal
supports broadcasting. More about broadcasting
here
x = tf.constant([5, 4, 6, 7])
y = tf.constant([5, 2, 5, 10])
tf.math.greater_equal(x, y) ==> [True, True, True, False]
x = tf.constant([5, 4, 6, 7])
y = tf.constant([5])
tf.math.greater_equal(x, y) ==> [True, False, True, True]
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
of type bool
.
__getitem__(
var,
slice_spec
)
Creates a slice helper object given a variable.
This allows creating a sub-tensor from part of the current contents
of a variable. See tf.Tensor.__getitem__
for detailed examples
of slicing.
This function in addition also allows assignment to a sliced range.
This is similar to __setitem__
functionality in Python. However,
the syntax is different so that the user can capture the assignment
operation for grouping or passing to sess.run()
.
For example,
import tensorflow as tf
A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32)
with tf.compat.v1.Session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
print(sess.run(A[:2, :2])) # => [[1,2], [4,5]]
op = A[:2,:2].assign(22. * tf.ones((2, 2)))
print(sess.run(op)) # => [[22, 22, 3], [22, 22, 6], [7,8,9]]
Note that assignments currently do not support NumPy broadcasting semantics.
var
: Anops.Variable
object.slice_spec
: The arguments toTensor.__getitem__
.
The appropriate slice of "tensor", based on "slice_spec".
As an operator. The operator also has a assign()
method
that can be used to generate an assignment operator.
ValueError
: If a slice range is negative size.TypeError
: TypeError: If the slice indices aren't int, slice, ellipsis, tf.newaxis or int32/int64 tensors.
__gt__(
x,
y,
name=None
)
Returns the truth value of (x > y) element-wise.
NOTE: math.greater
supports broadcasting. More about broadcasting
here
x = tf.constant([5, 4, 6])
y = tf.constant([5, 2, 5])
tf.math.greater(x, y) ==> [False, True, True]
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.greater(x, y) ==> [False, False, True]
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
of type bool
.
__invert__(
a,
*args,
**kwargs
)
__iter__()
Dummy method to prevent iteration.
Do not call.
NOTE(mrry): If we register getitem as an overloaded operator, Python will valiantly attempt to iterate over the variable's Tensor from 0 to infinity. Declaring this method prevents this unintended behavior.
TypeError
: when invoked.
__le__(
x,
y,
name=None
)
Returns the truth value of (x <= y) element-wise.
NOTE: math.less_equal
supports broadcasting. More about broadcasting
here
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less_equal(x, y) ==> [True, True, False]
x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 6])
tf.math.less_equal(x, y) ==> [True, True, True]
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
of type bool
.
__lt__(
x,
y,
name=None
)
Returns the truth value of (x < y) element-wise.
NOTE: math.less
supports broadcasting. More about broadcasting
here
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less(x, y) ==> [False, True, False]
x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 7])
tf.math.less(x, y) ==> [False, True, True]
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
of type bool
.
__matmul__(
a,
*args,
**kwargs
)
Multiplies matrix a
by matrix b
, producing a
* b
.
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.
Both matrices must be of the same type. The supported types are:
float16
, float32
, float64
, int32
, complex64
, complex128
.
Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True
. These are False
by default.
If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse
or b_is_sparse
flag to True
. These are False
by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes bfloat16
or float32
.
A simple 2-D tensor matrix multiplication:
>>> a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
>>> a # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6]], dtype=int32)>
>>> b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
>>> b # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7, 8],
[ 9, 10],
[11, 12]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58, 64],
[139, 154]], dtype=int32)>
A batch matrix multiplication with batch shape [2]:
>>> a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
>>> a # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]], dtype=int32)>
>>> b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
>>> b # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
[15, 16],
[17, 18]],
[[19, 20],
[21, 22],
[23, 24]]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
[229, 244]],
[[508, 532],
[697, 730]]], dtype=int32)>
Since python >= 3.5 the @ operator is supported
(see PEP 465). In TensorFlow,
it simply calls the tf.matmul()
function, so the following lines are
equivalent:
>>> d = a @ b @ [[10], [11]]
>>> d = tf.matmul(tf.matmul(a, b), [[10], [11]])
a
:tf.Tensor
of typefloat16
,float32
,float64
,int32
,complex64
,complex128
and rank > 1.b
:tf.Tensor
with same type and rank asa
.transpose_a
: IfTrue
,a
is transposed before multiplication.transpose_b
: IfTrue
,b
is transposed before multiplication.adjoint_a
: IfTrue
,a
is conjugated and transposed before multiplication.adjoint_b
: IfTrue
,b
is conjugated and transposed before multiplication.a_is_sparse
: IfTrue
,a
is treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor
, it just makes optimizations that assume most values ina
are zero. Seetf.sparse.sparse_dense_matmul
for some support fortf.sparse.SparseTensor
multiplication.b_is_sparse
: IfTrue
,b
is treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor
, it just makes optimizations that assume most values ina
are zero. Seetf.sparse.sparse_dense_matmul
for some support fortf.sparse.SparseTensor
multiplication.name
: Name for the operation (optional).
A tf.Tensor
of the same type as a
and b
where each inner-most matrix
is the product of the corresponding matrices in a
and b
, e.g. if all
transpose or adjoint attributes are False
:
output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j])
,
for all indices i
, j
.
Note
: This is matrix product, not element-wise product.
ValueError
: Iftranspose_a
andadjoint_a
, ortranspose_b
andadjoint_b
are both set toTrue
.
__mod__(
a,
*args,
**kwargs
)
Returns element-wise remainder of division. When x < 0
xor y < 0
is
true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x
.
NOTE: math.floormod
supports broadcasting. More about broadcasting
here
x
: ATensor
. Must be one of the following types:int32
,int64
,uint64
,bfloat16
,half
,float32
,float64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
. Has the same type as x
.
__mul__(
a,
*args,
**kwargs
)
Dispatches cwise mul for "DenseDense" and "DenseSparse".
__ne__(other)
Compares two variables element-wise for equality.
__neg__(
a,
*args,
**kwargs
)
Computes numerical negative value element-wise.
I.e., \(y = -x\).
x
: ATensor
. Must be one of the following types:bfloat16
,half
,float32
,float64
,int8
,int16
,int32
,int64
,complex64
,complex128
.name
: A name for the operation (optional).
A Tensor
. Has the same type as x
.
__nonzero__()
__or__(
a,
*args,
**kwargs
)
__pow__(
a,
*args,
**kwargs
)
Computes the power of one value to another.
Given a tensor x
and a tensor y
, this operation computes \(x^y\) for
corresponding elements in x
and y
. For example:
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
x
: ATensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.y
: ATensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.name
: A name for the operation (optional).
A Tensor
.
__radd__(
a,
*args,
**kwargs
)
The operation invoked by the Tensor.__add__
operator.
Purpose in the API:
This method is exposed in TensorFlow's API so that library developers
can register dispatching for `Tensor.__add__` to allow it to handle
custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does
appear in TensorFlow's generated documentation.
x
: The left-hand side of the+
operator.y
: The right-hand side of the+
operator.name
: an optional name for the operation.
The result of the elementwise +
operation.
__rand__(
a,
*args,
**kwargs
)
__rdiv__(
a,
*args,
**kwargs
)
Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide.
NOTE: Prefer using the Tensor division operator or tf.divide which obey Python 3 division operator semantics.
This function divides x
and y
, forcing Python 2 semantics. That is, if x
and y
are both integers then the result will be an integer. This is in
contrast to Python 3, where division with /
is always a float while division
with //
is always an integer.
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric type.name
: A name for the operation (optional).
x / y
returns the quotient of x and y.
__rfloordiv__(
a,
*args,
**kwargs
)
Divides x / y
elementwise, rounding toward the most negative integer.
The same as tf.compat.v1.div(x,y)
for integers, but uses
tf.floor(tf.compat.v1.div(x,y))
for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y
floor division in Python 3 and in Python 2.7 with
from __future__ import division
.
x
and y
must have the same type, and the result will have the same type
as well.
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric type.name
: A name for the operation (optional).
x / y
rounded down.
TypeError
: If the inputs are complex.
__rmatmul__(
a,
*args,
**kwargs
)
Multiplies matrix a
by matrix b
, producing a
* b
.
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.
Both matrices must be of the same type. The supported types are:
float16
, float32
, float64
, int32
, complex64
, complex128
.
Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True
. These are False
by default.
If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse
or b_is_sparse
flag to True
. These are False
by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes bfloat16
or float32
.
A simple 2-D tensor matrix multiplication:
>>> a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
>>> a # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6]], dtype=int32)>
>>> b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
>>> b # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7, 8],
[ 9, 10],
[11, 12]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58, 64],
[139, 154]], dtype=int32)>
A batch matrix multiplication with batch shape [2]:
>>> a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
>>> a # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]], dtype=int32)>
>>> b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
>>> b # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
[15, 16],
[17, 18]],
[[19, 20],
[21, 22],
[23, 24]]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
[229, 244]],
[[508, 532],
[697, 730]]], dtype=int32)>
Since python >= 3.5 the @ operator is supported
(see PEP 465). In TensorFlow,
it simply calls the tf.matmul()
function, so the following lines are
equivalent:
>>> d = a @ b @ [[10], [11]]
>>> d = tf.matmul(tf.matmul(a, b), [[10], [11]])
a
:tf.Tensor
of typefloat16
,float32
,float64
,int32
,complex64
,complex128
and rank > 1.b
:tf.Tensor
with same type and rank asa
.transpose_a
: IfTrue
,a
is transposed before multiplication.transpose_b
: IfTrue
,b
is transposed before multiplication.adjoint_a
: IfTrue
,a
is conjugated and transposed before multiplication.adjoint_b
: IfTrue
,b
is conjugated and transposed before multiplication.a_is_sparse
: IfTrue
,a
is treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor
, it just makes optimizations that assume most values ina
are zero. Seetf.sparse.sparse_dense_matmul
for some support fortf.sparse.SparseTensor
multiplication.b_is_sparse
: IfTrue
,b
is treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor
, it just makes optimizations that assume most values ina
are zero. Seetf.sparse.sparse_dense_matmul
for some support fortf.sparse.SparseTensor
multiplication.name
: Name for the operation (optional).
A tf.Tensor
of the same type as a
and b
where each inner-most matrix
is the product of the corresponding matrices in a
and b
, e.g. if all
transpose or adjoint attributes are False
:
output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j])
,
for all indices i
, j
.
Note
: This is matrix product, not element-wise product.
ValueError
: Iftranspose_a
andadjoint_a
, ortranspose_b
andadjoint_b
are both set toTrue
.
__rmod__(
a,
*args,
**kwargs
)
Returns element-wise remainder of division. When x < 0
xor y < 0
is
true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x
.
NOTE: math.floormod
supports broadcasting. More about broadcasting
here
x
: ATensor
. Must be one of the following types:int32
,int64
,uint64
,bfloat16
,half
,float32
,float64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
. Has the same type as x
.
__rmul__(
a,
*args,
**kwargs
)
Dispatches cwise mul for "DenseDense" and "DenseSparse".
__ror__(
a,
*args,
**kwargs
)
__rpow__(
a,
*args,
**kwargs
)
Computes the power of one value to another.
Given a tensor x
and a tensor y
, this operation computes \(x^y\) for
corresponding elements in x
and y
. For example:
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
x
: ATensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.y
: ATensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.name
: A name for the operation (optional).
A Tensor
.
__rsub__(
a,
*args,
**kwargs
)
Returns x - y element-wise.
NOTE: tf.subtract
supports broadcasting. More about broadcasting
here
Both input and output have a range (-inf, inf)
.
Example usages below.
Subtract operation between an array and a scalar:
>>> x = [1, 2, 3, 4, 5]
>>> y = 1
>>> tf.subtract(x, y)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
>>> tf.subtract(y, x)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 0, -1, -2, -3, -4], dtype=int32)>
Note that binary -
operator can be used instead:
>>> x = tf.convert_to_tensor([1, 2, 3, 4, 5])
>>> y = tf.convert_to_tensor(1)
>>> x - y
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
Subtract operation between an array and a tensor of same shape:
>>> x = [1, 2, 3, 4, 5]
>>> y = tf.constant([5, 4, 3, 2, 1])
>>> tf.subtract(y, x)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 4, 2, 0, -2, -4], dtype=int32)>
Warning: If one of the inputs (x
or y
) is a tensor and the other is a
non-tensor, the non-tensor input will adopt (or get casted to) the data type
of the tensor input. This can potentially cause unwanted overflow or underflow
conversion.
For example,
>>> x = tf.constant([1, 2], dtype=tf.int8)
>>> y = [2**8 + 1, 2**8 + 2]
>>> tf.subtract(x, y)
<tf.Tensor: shape=(2,), dtype=int8, numpy=array([0, 0], dtype=int8)>
When subtracting two input values of different shapes, tf.subtract
follows the
general broadcasting rules
. The two input array shapes are compared element-wise. Starting with the
trailing dimensions, the two dimensions either have to be equal or one of them
needs to be 1
.
For example,
>>> x = np.ones(6).reshape(2, 3, 1)
>>> y = np.ones(6).reshape(2, 1, 3)
>>> tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 3), dtype=float64, numpy=
array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]])>
Example with inputs of different dimensions:
>>> x = np.ones(6).reshape(2, 3, 1)
>>> y = np.ones(6).reshape(1, 6)
>>> tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 6), dtype=float64, numpy=
array([[[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]]])>
x
: ATensor
. Must be one of the following types:bfloat16
,half
,float32
,float64
,uint8
,int8
,uint16
,int16
,int32
,int64
,complex64
,complex128
,uint32
,uint64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
. Has the same type as x
.
__rtruediv__(
a,
*args,
**kwargs
)
Divides x / y elementwise (using Python 3 division operator semantics).
NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.
This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first. This op is generated by normal
x / y
division in Python 3 and in Python 2.7 with
from __future__ import division
. If you want integer division that rounds
down, use x // y
or tf.math.floordiv
.
x
and y
must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32
for int8
and int16
and float64
for int32
and int64
(matching the behavior of Numpy).
x
:Tensor
numerator of numeric type.y
:Tensor
denominator of numeric type.name
: A name for the operation (optional).
x / y
evaluated in floating point.
TypeError
: Ifx
andy
have different dtypes.
__rxor__(
a,
*args,
**kwargs
)
__sub__(
a,
*args,
**kwargs
)
Returns x - y element-wise.
NOTE: tf.subtract
supports broadcasting. More about broadcasting
here
Both input and output have a range (-inf, inf)
.
Example usages below.
Subtract operation between an array and a scalar:
>>> x = [1, 2, 3, 4, 5]
>>> y = 1
>>> tf.subtract(x, y)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
>>> tf.subtract(y, x)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 0, -1, -2, -3, -4], dtype=int32)>
Note that binary -
operator can be used instead:
>>> x = tf.convert_to_tensor([1, 2, 3, 4, 5])
>>> y = tf.convert_to_tensor(1)
>>> x - y
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
Subtract operation between an array and a tensor of same shape:
>>> x = [1, 2, 3, 4, 5]
>>> y = tf.constant([5, 4, 3, 2, 1])
>>> tf.subtract(y, x)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 4, 2, 0, -2, -4], dtype=int32)>
Warning: If one of the inputs (x
or y
) is a tensor and the other is a
non-tensor, the non-tensor input will adopt (or get casted to) the data type
of the tensor input. This can potentially cause unwanted overflow or underflow
conversion.
For example,
>>> x = tf.constant([1, 2], dtype=tf.int8)
>>> y = [2**8 + 1, 2**8 + 2]
>>> tf.subtract(x, y)
<tf.Tensor: shape=(2,), dtype=int8, numpy=array([0, 0], dtype=int8)>
When subtracting two input values of different shapes, tf.subtract
follows the
general broadcasting rules
. The two input array shapes are compared element-wise. Starting with the
trailing dimensions, the two dimensions either have to be equal or one of them
needs to be 1
.
For example,
>>> x = np.ones(6).reshape(2, 3, 1)
>>> y = np.ones(6).reshape(2, 1, 3)
>>> tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 3), dtype=float64, numpy=
array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]])>
Example with inputs of different dimensions:
>>> x = np.ones(6).reshape(2, 3, 1)
>>> y = np.ones(6).reshape(1, 6)
>>> tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 6), dtype=float64, numpy=
array([[[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]]])>
x
: ATensor
. Must be one of the following types:bfloat16
,half
,float32
,float64
,uint8
,int8
,uint16
,int16
,int32
,int64
,complex64
,complex128
,uint32
,uint64
.y
: ATensor
. Must have the same type asx
.name
: A name for the operation (optional).
A Tensor
. Has the same type as x
.
__truediv__(
a,
*args,
**kwargs
)
Divides x / y elementwise (using Python 3 division operator semantics).
NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.
This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first. This op is generated by normal
x / y
division in Python 3 and in Python 2.7 with
from __future__ import division
. If you want integer division that rounds
down, use x // y
or tf.math.floordiv
.
x
and y
must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32
for int8
and int16
and float64
for int32
and int64
(matching the behavior of Numpy).
x
:Tensor
numerator of numeric type.y
:Tensor
denominator of numeric type.name
: A name for the operation (optional).
x / y
evaluated in floating point.
TypeError
: Ifx
andy
have different dtypes.
__xor__(
a,
*args,
**kwargs
)
assign(
value,
use_locking=None,
name=None,
read_value=(True)
)
Assigns a new value to this variable.
value
: ATensor
. The new value for this variable.use_locking
: IfTrue
, use locking during the assignment.name
: The name to use for the assignment.read_value
: Abool
. Whether to read and return the new value of the variable or not.
If read_value
is True
, this method will return the new value of the
variable after the assignment has completed. Otherwise, when in graph mode
it will return the Operation
that does the assignment, and when in eager
mode it will return None
.
assign_add(
delta,
use_locking=None,
name=None,
read_value=(True)
)
Adds a value to this variable.
delta
: ATensor
. The value to add to this variable.use_locking
: IfTrue
, use locking during the operation.name
: The name to use for the operation.read_value
: Abool
. Whether to read and return the new value of the variable or not.
If read_value
is True
, this method will return the new value of the
variable after the assignment has completed. Otherwise, when in graph mode
it will return the Operation
that does the assignment, and when in eager
mode it will return None
.
assign_sub(
delta,
use_locking=None,
name=None,
read_value=(True)
)
Subtracts a value from this variable.
delta
: ATensor
. The value to subtract from this variable.use_locking
: IfTrue
, use locking during the operation.name
: The name to use for the operation.read_value
: Abool
. Whether to read and return the new value of the variable or not.
If read_value
is True
, this method will return the new value of the
variable after the assignment has completed. Otherwise, when in graph mode
it will return the Operation
that does the assignment, and when in eager
mode it will return None
.
batch_scatter_update(
sparse_delta,
use_locking=(False),
name=None
)
Assigns tf.IndexedSlices
to this variable batch-wise.
Analogous to batch_gather
. This assumes that this variable and the
sparse_delta IndexedSlices have a series of leading dimensions that are the
same for all of them, and the updates are performed on the last dimension of
indices. In other words, the dimensions should be the following:
num_prefix_dims = sparse_delta.indices.ndims - 1
batch_dim = num_prefix_dims + 1
sparse_delta.updates.shape = sparse_delta.indices.shape + var.shape[ batch_dim:]
where
sparse_delta.updates.shape[:num_prefix_dims]
== sparse_delta.indices.shape[:num_prefix_dims]
== var.shape[:num_prefix_dims]
And the operation performed can be expressed as:
var[i_1, ..., i_n, sparse_delta.indices[i_1, ..., i_n, j]] = sparse_delta.updates[ i_1, ..., i_n, j]
When sparse_delta.indices is a 1D tensor, this operation is equivalent to
scatter_update
.
To avoid this operation one can looping over the first ndims
of the
variable and using scatter_update
on the subtensors that result of slicing
the first dimension. This is a valid option for ndims = 1
, but less
efficient than this implementation.
sparse_delta
:tf.IndexedSlices
to be assigned to this variable.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
count_up_to(limit)
Increments this variable until it reaches limit
. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Prefer Dataset.range instead.
When that Op is run it tries to increment the variable by 1
. If
incrementing the variable would bring it above limit
then the Op raises
the exception OutOfRangeError
.
If no error is raised, the Op outputs the value of the variable before the increment.
This is essentially a shortcut for count_up_to(self, limit)
.
limit
: value at which incrementing the variable raises an error.
A Tensor
that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.
eval(session=None)
Evaluates and returns the value of this variable.
experimental_ref()
DEPRECATED FUNCTION
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use ref() instead.
@staticmethod
from_proto(
variable_def,
import_scope=None
)
Returns a Variable
object created from variable_def
.
gather_nd(
indices,
name=None
)
Reads the value of this variable sparsely, using gather_nd
.
get_shape()
Alias of Variable.shape
.
initialized_value()
Returns the value of the initialized variable. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
You should use this instead of the variable itself to initialize another variable with a value that depends on the value of this variable.
# Initialize 'v' with a random tensor.
v = tf.Variable(tf.random.truncated_normal([10, 40]))
# Use `initialized_value` to guarantee that `v` has been
# initialized before its value is used to initialize `w`.
# The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)
A Tensor
holding the value of this variable after its initializer
has run.
is_initialized(name=None)
Checks whether a resource variable has been initialized.
Outputs boolean scalar indicating whether the tensor has been initialized.
name
: A name for the operation (optional).
A Tensor
of type bool
.
load(
value,
session=None
)
Load new value into this variable. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X.
Writes new value to variable's memory. Doesn't add ops to the graph.
This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used. See tf.compat.v1.Session
for more
information on launching a graph and on sessions.
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as sess:
sess.run(init)
# Usage passing the session explicitly.
v.load([2, 3], sess)
print(v.eval(sess)) # prints [2 3]
# Usage with the default session. The 'with' block
# above makes 'sess' the default session.
v.load([3, 4], sess)
print(v.eval()) # prints [3 4]
value
: New variable valuesession
: The session to use to evaluate this variable. If none, the default session is used.
ValueError
: Session is not passed and no default session
numpy()
prefetch_values(update=(False))
read_value(do_prefetch=(True))
Constructs an op which reads the value of this variable.
Should be used when there are multiple reads, or when it is desirable to
read the value only after some condition is true.
Args:
do_prefetch: get value from params
before reading, if True
the read operation.
ref()
Returns a hashable reference object to this Variable.
The primary use case for this API is to put variables in a set/dictionary.
We can't put variables in a set/dictionary as variable.__hash__()
is no
longer available starting Tensorflow 2.0.
The following will raise an exception starting 2.0
>>> x = tf.Variable(5)
>>> y = tf.Variable(10)
>>> z = tf.Variable(10)
>>> variable_set = {x, y, z}
Traceback (most recent call last):
...
TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.
>>> variable_dict = {x: 'five', y: 'ten'}
Traceback (most recent call last):
...
TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.
Instead, we can use variable.ref()
.
>>> variable_set = {x.ref(), y.ref(), z.ref()}
>>> x.ref() in variable_set
True
>>> variable_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'}
>>> variable_dict[y.ref()]
'ten'
Also, the reference object provides .deref()
function that returns the
original Variable.
>>> x = tf.Variable(5)
>>> x.ref().deref()
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=5>
scatter_add(
sparse_delta,
use_locking=(False),
name=None
)
Adds tf.IndexedSlices
to this variable.
sparse_delta
:tf.IndexedSlices
to be added to this variable.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
scatter_div(
sparse_delta,
use_locking=(False),
name=None
)
Divide this variable by tf.IndexedSlices
.
sparse_delta
:tf.IndexedSlices
to divide this variable by.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
scatter_max(
sparse_delta,
use_locking=(False),
name=None
)
Updates this variable with the max of tf.IndexedSlices
and itself.
sparse_delta
:tf.IndexedSlices
to use as an argument of max with this variable.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
scatter_min(
sparse_delta,
use_locking=(False),
name=None
)
Updates this variable with the min of tf.IndexedSlices
and itself.
sparse_delta
:tf.IndexedSlices
to use as an argument of min with this variable.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
scatter_mul(
sparse_delta,
use_locking=(False),
name=None
)
Multiply this variable by tf.IndexedSlices
.
sparse_delta
:tf.IndexedSlices
to multiply this variable by.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
scatter_nd_add(
indices,
updates,
name=None
)
Applies sparse addition to individual values or slices in a Variable.
ref
is a Tensor
with rank P
and indices
is a Tensor
of rank Q
.
indices
must be integer tensor, containing indices into ref
.
It must be shape [d_0, ..., d_{Q-2}, K]
where 0 < K <= P
.
The innermost dimension of indices
(with length K
) corresponds to
indices into elements (if K = P
) or slices (if K < P
) along the K
th
dimension of ref
.
updates
is Tensor
of rank Q-1+P-K
with shape:
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this:
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
add = ref.scatter_nd_add(indices, updates)
with tf.compat.v1.Session() as sess:
print sess.run(add)
The resulting update to ref would look like this:
[1, 13, 3, 14, 14, 6, 7, 20]
See tf.scatter_nd
for more details about how to make updates to
slices.
indices
: The indices to be used in the operation.updates
: The values to be used in the operation.name
: the name of the operation.
The updated variable.
scatter_nd_max(
indices,
updates,
name=None
)
Updates this variable with the max of tf.IndexedSlices
and itself.
ref
is a Tensor
with rank P
and indices
is a Tensor
of rank Q
.
indices
must be integer tensor, containing indices into ref
.
It must be shape [d_0, ..., d_{Q-2}, K]
where 0 < K <= P
.
The innermost dimension of indices
(with length K
) corresponds to
indices into elements (if K = P
) or slices (if K < P
) along the K
th
dimension of ref
.
updates
is Tensor
of rank Q-1+P-K
with shape:
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
See tf.scatter_nd
for more details about how to make updates to
slices.
indices
: The indices to be used in the operation.updates
: The values to be used in the operation.name
: the name of the operation.
The updated variable.
scatter_nd_min(
indices,
updates,
name=None
)
Updates this variable with the min of tf.IndexedSlices
and itself.
ref
is a Tensor
with rank P
and indices
is a Tensor
of rank Q
.
indices
must be integer tensor, containing indices into ref
.
It must be shape [d_0, ..., d_{Q-2}, K]
where 0 < K <= P
.
The innermost dimension of indices
(with length K
) corresponds to
indices into elements (if K = P
) or slices (if K < P
) along the K
th
dimension of ref
.
updates
is Tensor
of rank Q-1+P-K
with shape:
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
See tf.scatter_nd
for more details about how to make updates to
slices.
indices
: The indices to be used in the operation.updates
: The values to be used in the operation.name
: the name of the operation.
The updated variable.
scatter_nd_sub(
indices,
updates,
name=None
)
Applies sparse subtraction to individual values or slices in a Variable.
ref
is a Tensor
with rank P
and indices
is a Tensor
of rank Q
.
indices
must be integer tensor, containing indices into ref
.
It must be shape [d_0, ..., d_{Q-2}, K]
where 0 < K <= P
.
The innermost dimension of indices
(with length K
) corresponds to
indices into elements (if K = P
) or slices (if K < P
) along the K
th
dimension of ref
.
updates
is Tensor
of rank Q-1+P-K
with shape:
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this:
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = ref.scatter_nd_sub(indices, updates)
with tf.compat.v1.Session() as sess:
print sess.run(op)
The resulting update to ref would look like this:
[1, -9, 3, -6, -6, 6, 7, -4]
See tf.scatter_nd
for more details about how to make updates to
slices.
indices
: The indices to be used in the operation.updates
: The values to be used in the operation.name
: the name of the operation.
The updated variable.
scatter_nd_update(
indices,
updates,
name=None
)
Applies sparse assignment to individual values or slices in a Variable.
ref
is a Tensor
with rank P
and indices
is a Tensor
of rank Q
.
indices
must be integer tensor, containing indices into ref
.
It must be shape [d_0, ..., d_{Q-2}, K]
where 0 < K <= P
.
The innermost dimension of indices
(with length K
) corresponds to
indices into elements (if K = P
) or slices (if K < P
) along the K
th
dimension of ref
.
updates
is Tensor
of rank Q-1+P-K
with shape:
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this:
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = ref.scatter_nd_update(indices, updates)
with tf.compat.v1.Session() as sess:
print sess.run(op)
The resulting update to ref would look like this:
[1, 11, 3, 10, 9, 6, 7, 12]
See tf.scatter_nd
for more details about how to make updates to
slices.
indices
: The indices to be used in the operation.updates
: The values to be used in the operation.name
: the name of the operation.
The updated variable.
scatter_sub(
sparse_delta,
use_locking=(False),
name=None
)
Subtracts tf.IndexedSlices
from this variable.
sparse_delta
:tf.IndexedSlices
to be subtracted from this variable.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
scatter_update(
sparse_delta,
use_locking=(False),
name=None
)
Assigns tf.IndexedSlices
to this variable.
sparse_delta
:tf.IndexedSlices
to be assigned to this variable.use_locking
: IfTrue
, use locking during the operation.name
: the name of the operation.
The updated variable.
TypeError
: ifsparse_delta
is not anIndexedSlices
.
set_shape(shape)
Overrides the shape for this variable.
shape
: theTensorShape
representing the overridden shape.
size()
sparse_read(
indices,
name=None
)
Reads the value of this variable sparsely, using gather
.
to_proto(export_scope=None)
Converts a ResourceVariable
to a VariableDef
protocol buffer.
export_scope
: Optionalstring
. Name scope to remove.
RuntimeError
: If run in EAGER mode.
A VariableDef
protocol buffer, or None
if the Variable
is not
in the specified name scope.
transform(result)
update_op(v0=None)
value()
A cached operation which reads the value of this variable.