-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmnist_pid.py
112 lines (95 loc) · 3.8 KB
/
mnist_pid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
from pid import PIDOptimizer
import os
import numpy as np
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
import torch.nn.functional as F
# Hyper Parameters
input_size = 784
hidden_size = 1000
num_classes = 10
num_epochs = 20
batch_size = 100
learning_rate = 0.01
I=3
I = float(I)
D = 100
D = float(D)
logger = Logger('pid.txt', title='mnist')
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# Neural Network Model (1 hidden layer)
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = F.relu(out)
out = self.fc2(out)
return out
net = Net(input_size, hidden_size, num_classes)
net.cuda()
net.train()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = PIDOptimizer(net.parameters(), lr=learning_rate, weight_decay=0.0001, momentum=0.9, I=I, D=D)
# Train the Model
for epoch in range(num_epochs):
train_loss_log = AverageMeter()
train_acc_log = AverageMeter()
val_loss_log = AverageMeter()
val_acc_log = AverageMeter()
for i, (images, labels) in enumerate(train_loader):
# Convert torch tensor to Variable
images = Variable(images.view(-1, 28*28).cuda())
labels = Variable(labels.cuda())
# Forward + Backward + Optimize
optimizer.zero_grad() # zero the gradient buffer
outputs = net(images)
train_loss = criterion(outputs, labels)
train_loss.backward()
optimizer.step()
prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1, 5))
train_loss_log.update(train_loss.data[0], images.size(0))
train_acc_log.update(prec1[0], images.size(0))
if (i+1) % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Acc: %.8f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, train_loss_log.avg, train_acc_log.avg))
# Test the Model
net.eval()
correct = 0
loss = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28)).cuda()
labels = Variable(labels).cuda()
outputs = net(images)
test_loss = criterion(outputs, labels)
val_loss_log.update(test_loss.data[0], images.size(0))
prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1, 5))
val_acc_log.update(prec1[0], images.size(0))
logger.append([learning_rate, train_loss_log.avg, val_loss_log.avg, train_acc_log.avg, val_acc_log.avg])
print('Accuracy of the network on the 10000 test images: %d %%' % (val_acc_log.avg))
print('Loss of the network on the 10000 test images: %.8f' % (val_loss_log.avg))
logger.close()
logger.plot()