forked from hjd1964/OnStep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAstro.ino
713 lines (603 loc) · 19.9 KB
/
Astro.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
// -----------------------------------------------------------------------------------------------------------------------------
// Astronomy related functions
// convert string in format MM/DD/YY to julian date
boolean dateToDouble(double *JulianDay, char *date) {
char m[3],d[3],y[3];
int m1,d1,y1;
if (strlen(date)!= 8) return false;
m[0]=*date++; m[1]=*date++; m[2]=0; atoi2(m,&m1);
if (*date++!='/') return false; d[0]=*date++; d[1]=*date++; d[2]=0; atoi2(d,&d1);
if (*date++!='/') return false; y[0]=*date++; y[1]=*date++; y[2]=0; atoi2(y,&y1);
if ((m1<1) || (m1>12) || (d1<1) || (d1>31) || (y1<0) || (y1>99)) return false;
if (y1>11) y1=y1+2000; else y1=y1+2100;
*JulianDay=julian(y1,m1,d1);
return true;
}
// convert string in format HH:MM:SS to floating point
// (also handles) HH:MM.M
boolean hmsToDouble(double *f, char *hms) {
char h[3],m[5],s[3];
int h1,m1,m2=0,s1=0;
while (*hms==' ') hms++; // strip prefix white-space
if (highPrecision) { if (strlen(hms)!= 8) return false; } else if (strlen(hms)!= 7) return false;
h[0]=*hms++; h[1]=*hms++; h[2]=0; atoi2(h,&h1);
if (highPrecision) {
if (*hms++!=':') return false; m[0]=*hms++; m[1]=*hms++; m[2]=0; atoi2(m,&m1);
if (*hms++!=':') return false; s[0]=*hms++; s[1]=*hms++; s[2]=0; atoi2(s,&s1);
} else {
if (*hms++!=':') return false; m[0]=*hms++; m[1]=*hms++; m[2]=0; atoi2(m,&m1);
if (*hms++!='.') return false; m2=(*hms++)-'0';
}
if ((h1<0) || (h1>23) || (m1<0) || (m1>59) || (m2<0) || (m2>9) || (s1<0) || (s1>59)) return false;
*f=h1+m1/60.0+m2/600.0+s1/3600.0;
return true;
}
boolean doubleToHms(char *reply, double *f) {
double h1,m1,f1,s1;
f1=fabs(*f)+0.000139; // round to 1/2 arc-sec
h1=floor(f1);
m1=(f1-h1)*60;
s1=(m1-floor(m1));
char s[]="%s%02d:%02d:%02d";
if (highPrecision) {
s1=s1*60.0;
} else {
s1=s1*10.0;
s[11]='.'; s[14]='1';
}
char sign[2]="";
if (((s1!=0) || (m1!=0) || (h1!=0)) && (*f<0.0)) strcpy(sign,"-");
sprintf(reply,s,sign,(int)h1,(int)m1,(int)s1);
return true;
}
// convert string in format sDD:MM:SS to floating point
// (also handles) DDD:MM:SS
// sDD:MM
// DDD:MM
// sDD*MM
// DDD*MM
boolean dmsToDouble(double *f, char *dms, boolean sign_present) {
char d[4],m[5],s[3];
int d1, m1, s1=0;
int lowLimit=0, highLimit=360;
int checkLen,checkLen1;
double sign = 1.0;
boolean secondsOff = false;
while (*dms==' ') dms++; // strip prefix white-space
checkLen1=strlen(dms);
// determine if the seconds field was used and accept it if so
if (highPrecision) {
checkLen=9;
if (checkLen1 != checkLen) return false;
} else {
checkLen=6;
if (checkLen1 != checkLen) {
if (checkLen1==9) { secondsOff=false; checkLen=9; } else return false;
} else secondsOff = true;
}
// determine if the sign was used and accept it if so
if (sign_present) {
if (*dms=='-') sign=-1.0; else if (*dms=='+') sign=1.0; else return false;
dms++; d[0]=*dms++; d[1]=*dms++; d[2]=0; if (!atoi2(d,&d1)) return false;
} else {
d[0]=*dms++; d[1]=*dms++; d[2]=*dms++; d[3]=0; if (!atoi2(d,&d1)) return false;
}
// make sure the seperator is an allowed character
if ((*dms!=':') && (*dms!='*') && (*dms!=char(223))) return false; else dms++;
m[0]=*dms++; m[1]=*dms++; m[2]=0; if (!atoi2(m,&m1)) return false;
if ((highPrecision) && (!secondsOff)) {
// make sure the seperator is an allowed character
if (*dms++!=':') return false;
s[0]=*dms++; s[1]=*dms++; s[2]=0; atoi2(s,&s1);
}
if (sign_present) { lowLimit=-90; highLimit=90; }
if ((d1<lowLimit) || (d1>highLimit) || (m1<0) || (m1>59) || (s1<0) || (s1>59)) return false;
*f=sign*(d1+m1/60.0+s1/3600.0);
return true;
}
boolean doubleToDms(char *reply, double *f, boolean fullRange, boolean signPresent) {
char sign[]="+";
int o=0,d1,s1=0;
double m1,f1;
f1=*f;
// setup formatting, handle adding the sign
if (f1<0) { f1=-f1; sign[0]='-'; }
f1=f1+0.000139; // round to 1/2 arc-second
d1=floor(f1);
m1=(f1-d1)*60.0;
s1=(m1-floor(m1))*60.0;
char s[]="+%02d*%02d:%02d";
if (signPresent) {
if (sign[0]=='-') { s[0]='-'; } o=1;
} else {
strcpy(s,"%02d*%02d:%02d");
}
if (fullRange) s[2+o]='3';
if (highPrecision) {
sprintf(reply,s,d1,(int)m1,s1);
} else {
s[9+o]=0;
sprintf(reply,s,d1,(int)m1);
}
return true;
}
void timeZoneToHM(char *reply, double tz) {
double f=fabs(frac(tz));
sprintf(reply,"%+03d",(int)tz);
// append for :30
if (fabs(f-0.5)<0.00000001) {
strcat(reply,":30");
}
// append for :45
if (fabs(f-0.75)<0.00000001) {
strcat(reply,":45");
}
}
// -----------------------------------------------------------------------------------------------------------------------------
// Date Time conversion
// converts Gregorian date (Y,M,D) to Julian day number
double julian(int Year, int Month, int Day) {
if ((Month==1) || (Month==2)) { Year--; Month=Month+12; }
double B=2.0-floor(Year/100.0)+floor(Year/400.0);
return (B+floor(365.25*Year)+floor(30.6001*(Month+1.0))+Day+1720994.5); //+(Time/24.0);
}
// converts Julian day number to Gregorian date (Y,M,D)
void greg(double JulianDay, int *Year, int *Month, int *Day) {
double A,B,C,D,D1,E,F,G,I;
JulianDay=JulianDay+0.5;
I=floor(JulianDay);
F=0.0; // JD-I;
if (I>2299160.0) {
A=int((I-1867216.25)/36524.25);
B=I+1.0+A-floor(A/4.0);
} else B=I;
C=B+1524.0;
D=floor((C-122.1)/365.25);
E=floor(365.25*D);
G=floor((C-E)/30.6001);
D1=C-E+F-floor(30.6001*G);
*Day=floor(D1);
if (G<13.5) *Month=floor(G-1.0); else *Month=floor(G-13.0);
if (*Month>2.5) *Year=floor(D-4716.0); else *Year=floor(D-4715.0);
}
// convert date/time to Greenwich Apparent Sidereal time
double jd2gast(double JulianDay, double ut1) {
int y,m,d;
greg(JulianDay,&y,&m,&d);
double JulianDay0=julian(y,m,d);
double D= (JulianDay - 2451545.0)+(ut1/24.0);
double D0=(JulianDay0- 2451545.0);
double H = ut1;
double T = D/36525.0;
double gmst=6.697374558 + 0.06570982441908*D0;
gmst=timeRange(gmst);
gmst=gmst + 1.00273790935*H + 0.000026*T*T;
gmst=timeRange(gmst);
// equation of the equinoxes
double O = 125.04 - 0.052954*D;
double L = 280.47 + 0.98565*D;
double E = 23.4393 - 0.0000004*D;
double W = -0.000319*sin(O/Rad) - 0.000024*sin((2*L)/Rad);
double eqeq = W*cos(E/Rad);
double gast=gmst+eqeq;
return timeRange(gast);
}
// convert date/time to Local Apparent Sidereal Time
// optionally updates the RTC, uses longitude
double jd2last(double JulianDay, double ut1, bool updateRTC) {
// update RTC
if (updateRTC) {
#ifdef RTC_DS3234
int y,mo,d,h,dow;
double m,s;
double lmt=ut1-timeZone;
// correct for day moving forward/backward... this works for multipule days of up-time
double J=JulianDay;
while (lmt>=24.0) { lmt=lmt-24.0; J=J-1.0; }
if (lmt<0.0) { lmt=lmt+24.0; J=J+1.0; }
greg(J,&y,&mo,&d); y-=2000; if (y>=100) y-=100;
double f1=fabs(lmt)+0.000139;
h=floor(f1);
m=(f1-h)*60.0;
s=(m-floor(m))*60.0;
dow=(round(J)%7)+1;
rtc.setTime(floor(s), floor(m), h, dow, d, mo, y);
#endif
}
// JulianDay is the Local date, jd2gast requires a universal time
// this is a hack that leaves the date alone and lets the UT1 cover
// the difference in time to the next (or previous) day
double gast=jd2gast(JulianDay,ut1);
return timeRange(gast-(longitude/15.0));
}
// passes Local Apparent Sidereal Time to stepper timer
void update_lst(double t) {
long lst1=(t/24.0)*8640000.0;
// set the local sidereal time
cli();
lst=lst1;
sei();
UT1_start=UT1;
lst_start=lst1;
}
// convert the lst (in 1/100 second units) into floating point hours
double LST() {
cli(); long tempLst=lst; sei();
while (tempLst>8640000) tempLst-=8640000;
return (tempLst/8640000.0)*24.0;
}
double decodeTimeZone(double tz) {
// -100 codes for :30
if (tz<-24.0) {
tz=tz+100.0;
if (tz<0) tz=tz-0.5; else tz=tz+0.5;
}
// +100 codes for :45
if (tz>24.0) {
tz=tz-100.0;
if (tz<0) tz=tz-0.75; else tz=tz+0.75;
}
return tz;
}
double encodeTimeZone(double tz) {
double f=fabs(frac(tz));
// -100 codes for :30
if (fabs(f-0.5)<0.00000001) {
tz=(long)tz-100.0;
}
// +100 codes for :45
if (fabs(f-0.75)<0.00000001) {
tz=(long)tz+100.0;
}
tz=(long)tz;
return tz;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Coordinate conversion
// convert equatorial coordinates to horizon
// this takes approx. 1.4mS on a 16MHz Mega2560
void EquToHor(double HA, double Dec, double *Alt, double *Azm) {
while (HA<0.0) HA=HA+360.0;
while (HA>=360.0) HA=HA-360.0;
HA =HA/Rad;
Dec=Dec/Rad;
double SinAlt = (sin(Dec) * sinLat) + (cos(Dec) * cosLat * cos(HA));
*Alt = asin(SinAlt);
double t1=sin(HA);
double t2=cos(HA)*sinLat-tan(Dec)*cosLat;
*Azm=atan2(t1,t2)*Rad;
*Azm=*Azm+180.0;
*Alt = *Alt*Rad;
}
// convert horizon coordinates to equatorial
// this takes approx. 1.4mS
void HorToEqu(double Alt, double Azm, double *HA, double *Dec) {
while (Azm<0) Azm=Azm+360.0;
while (Azm>=360.0) Azm=Azm-360.0;
Alt = Alt/Rad;
Azm = Azm/Rad;
double SinDec = (sin(Alt) * sinLat) + (cos(Alt) * cosLat * cos(Azm));
*Dec = asin(SinDec);
double t1=sin(Azm);
double t2=cos(Azm)*sinLat-tan(Alt)*cosLat;
*HA=atan2(t1,t2)*Rad;
*HA=*HA+180.0;
*Dec = *Dec*Rad;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Refraction rate tracking
int az_step = 0;
double az_Axis1=0,az_Axis2=0;
double az_Dec=0,az_HA=0;
double az_Dec1=0,az_HA1=0,az_Dec2=-91,az_HA2=0;
double az_Alt,az_Azm,_az_Alt;
double az_deltaAxis1=15.0,az_deltaAxis2=0.0;
double az_currentRate=1.0;
// az_deltaH/D are in arc-seconds/second
// trackingTimerRateAxis1/2 are x the sidereal rate
void SetDeltaTrackingRate() {
#ifndef MOUNT_TYPE_ALTAZM
if (!onTrackDec) az_deltaAxis2=0.0;
#endif
cli();
if (trackingState==TrackingSidereal) trackingTimerRateAxis1=az_deltaAxis1/15.0; else trackingTimerRateAxis1=0.0;
if (trackingState==TrackingSidereal) trackingTimerRateAxis2=az_deltaAxis2/15.0; else trackingTimerRateAxis2=0.0;
sei();
fstepAxis1.fixed=doubleToFixed( (((double)StepsPerDegreeAxis1/240.0)*(az_deltaAxis1/15.0))/100.0 );
fstepAxis2.fixed=doubleToFixed( (((double)StepsPerDegreeAxis2/240.0)*(az_deltaAxis2/15.0))/100.0 );
}
void SetTrackingRate(double r) {
az_currentRate=r;
#ifndef MOUNT_TYPE_ALTAZM
az_deltaAxis1=r*15.0;
az_deltaAxis2=0.0;
#endif
}
double GetTrackingRate() {
return az_currentRate;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Low overhead altitude calculation, 16 calls to complete
byte ac_step = 0;
double ac_HA=0,ac_De=0,ac_Dec=0;
double ac_sindec,ac_cosdec,ac_cosha;
double ac_sinalt;
double getApproxDec() {
return ac_De;
}
boolean do_fastalt_calc() {
boolean done=false;
ac_step++;
// load HA/Dec
if (ac_step==1) {
getApproxEqu(&ac_HA,&ac_De,true);
ac_Dec=ac_De;
} else
// convert units
if (ac_step==2) {
ac_HA =ac_HA/Rad;
ac_Dec=ac_Dec/Rad;
} else
// prep Dec
if (ac_step==3) {
ac_sindec=sin(ac_Dec);
} else
// prep Dec
if (ac_step==4) {
ac_cosdec=cos(ac_Dec);
} else
// prep HA
if (ac_step==5) {
ac_cosha=cos(ac_HA);
} else
// calc Alt, phase 1
if (ac_step==6) {
ac_sinalt = (ac_sindec * sinLat) + (ac_cosdec * cosLat * ac_cosha);
} else
// calc Alt, phase 2
if (ac_step==7) {
currentAlt=asin(ac_sinalt)*Rad;
} else
// finish
if (ac_step==8) {
ac_step=0;
done=true;
}
return done;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Refraction adjusted tracking
// returns the amount of refraction (in arcminutes) at given altitude (degrees), pressure (millibars), and temperature (celsius)
double Refrac(double Alt, double Pressure=1010.0, double Temperature=15.0) {
double TPC=(Pressure/1010.0) * (283.0/(273.0+Temperature));
double r=( ( 1.02*cot( (Alt+(10.3/(Alt+5.11)))/Rad ) ) ) * TPC; if (r<0.0) r=0.0;
return r;
}
// Alternate tracking rate calculation method
double ZenithTrackingRate() {
double Alt1=currentAlt+0.5; if (Alt1<0.0) Alt1=0.0;
double Alt2=currentAlt-0.5; if (Alt2<0.0) Alt2=0.0;
if (currentAlt>89.8) return 15.0;
if (currentAlt>89.5) return 14.998;
double Alt1_ = Alt1 - ( Refrac(Alt1) / 60.0 );
double Alt2_ = Alt2 - ( Refrac(Alt2) / 60.0 );
return 15.0 * ((double)(( Alt1 - Alt2 ) / ( Alt1_ - Alt2_ )));
}
// distance in arc-min ahead of and behind the current Equ position, used for rate calculation
#if defined(__AVR_ATmega2560__)
#define RefractionRateRange 30
#else
#define RefractionRateRange 10
#endif
boolean do_refractionRate_calc() {
boolean done=false;
// turn off if not tracking at sidereal rate
if (trackingState!=TrackingSidereal) { az_deltaAxis1=az_currentRate*15.0; az_deltaAxis2=0.0; return true; }
az_step++;
// load HA/Dec
if (az_step==1) {
if (onTrack)
getEqu(&az_Axis1,&az_Axis2,true);
else
getApproxEqu(&az_Axis1,&az_Axis2,true);
} else
// convert units, get ahead of and behind current position
if ((az_step==5) || (az_step==105)) {
az_Dec=az_Axis2;
az_HA =az_Axis1;
if (az_step==5) az_HA =az_HA-(RefractionRateRange/60.0);
if (az_step==105) az_HA =az_HA+(RefractionRateRange/60.0);
} else
// get the Horizon coords
if ((az_step==10) || (az_step==110)) {
if (onTrack) GeoAlign.EquToInstr(latitude,az_HA,az_Dec,&az_HA,&az_Dec);
}
// get the Horizon coords
if ((az_step==15) || (az_step==115)) {
EquToHor(az_HA,az_Dec,&az_Alt,&az_Azm);
} else
// apply refraction
if ((az_step==20) || (az_step==120)) {
az_Alt+=Refrac(az_Alt)/60.0;
} else
// convert back to the Equtorial coords
if ((az_step==25) || (az_step==125)) {
if (onTrack) GeoAlign.InstrToEqu(latitude,az_HA,az_Dec,&az_HA,&az_Dec);
}
// convert back to the Equtorial coords
if ((az_step==30) || (az_step==130)) {
HorToEqu(az_Alt,az_Azm,&az_HA1,&az_Dec1);
if (az_HA1>180.0) az_HA1-=360.0; // HA range +/-180
} else
// calculate refraction rate deltas'
if ((az_step==35) || (az_step==135)) {
// store first calc
if (az_step==35) { az_HA2=az_HA1; az_Dec2=az_Dec1; }
// we have both -0.5hr and +0.5hr values
if (az_step==135) {
// set rates
// handle coordinate wrap
if ((az_HA1<-90.0) && (az_HA2>90.0)) az_HA1+=360.0;
if ((az_HA2<-90.0) && (az_HA1>90.0)) az_HA2+=360.0;
// set rates
double dax1=(az_HA1-az_HA2) *(15.0/(RefractionRateRange/60.0))/2.0;
az_deltaAxis1=(az_deltaAxis1*9.0+dax1)/10.0;
double dax2=(az_Dec1-az_Dec2)*(15.0/(RefractionRateRange/60.0))/2.0;
az_deltaAxis2=(az_deltaAxis2*9.0+dax2)/10.0;
// override for special case of near a celestial pole
if (90.0-fabs(az_Dec)<(1.0/3600.0)) { az_deltaAxis1=az_currentRate*15.0; az_deltaAxis2=0.0; }
// override for special case of near the zenith
if (currentAlt>(90.0-7.5)) {
az_deltaAxis1=ZenithTrackingRate();
az_deltaAxis2=0.0;
}
}
} else
// finish once every 200 calls
if (az_step==200) {
az_step=0;
done=true;
}
return done;
}
// -----------------------------------------------------------------------------------------------------------------------------
// AltAz tracking
#ifdef MOUNT_TYPE_ALTAZM
#define AltAzTrackingRange 10 // distance in arc-min (20) ahead of and behind the current Equ position, used for rate calculation
double az_Alt1,az_Alt2,az_Azm1,az_Azm2;
boolean do_altAzmRate_calc() {
boolean done=false;
// turn off if not tracking at sidereal rate
if (((trackingState!=TrackingSidereal) && (trackingState!=TrackingMoveTo))) { az_deltaAxis1=0.0; az_deltaAxis2=0.0; return true; }
az_step++;
// convert units, get ahead of and behind current position
if (az_step==1) {
if (trackingState==TrackingMoveTo) {
cli();
az_Axis1=targetAxis1.part.m+indexAxis1Steps;
az_Axis2=targetAxis2.part.m+indexAxis2Steps;
sei();
} else {
cli();
az_Axis1=posAxis1+indexAxis1Steps;
az_Axis2=posAxis2+indexAxis2Steps;
sei();
}
// get the Azm
az_Azm=(double)az_Axis1/(double)StepsPerDegreeAxis1;
// get the Alt
az_Alt=(double)az_Axis2/(double)StepsPerDegreeAxis2;
} else
// convert to Equatorial coords
if ((az_step==5)) {
HorToEqu(az_Alt,az_Azm,&az_HA1,&az_Dec1);
} else
// look ahead of and behind the current position
if ((az_step==10) || (az_step==110)) {
if (az_step==10 ) az_HA =(az_HA1-(AltAzTrackingRange/60.0));
if (az_step==110) az_HA =(az_HA1+(AltAzTrackingRange/60.0));
az_Dec=az_Dec1;
} else
// each back to the Horizon coords
if ((az_step==15) || (az_step==115)) {
EquToHor(az_HA,az_Dec,&az_Alt,&az_Azm);
if (az_Azm>180.0) az_Azm-=360.0;
if (az_Azm<-180.0) az_Azm+=360.0;
if (az_step==15) {
az_Alt2=az_Alt;
az_Azm2=az_Azm;
}
if (az_step==115) {
az_Alt1=az_Alt;
az_Azm1=az_Azm;
}
} else
// calculate tracking rate deltas'
if ((az_step==20) || (az_step==120)) {
// we have both -0.5hr and +0.5hr values
if (az_step==120) {
// handle coordinate wrap
if ((az_Azm1<-90.0) && (az_Azm2>90.0)) az_Azm1+=360.0;
if ((az_Azm2<-90.0) && (az_Azm1>90.0)) az_Azm2+=360.0;
// set rates
az_deltaAxis1=((az_Azm1-az_Azm2)*(15.0/(AltAzTrackingRange/60.0))/2.0)*az_currentRate;
az_deltaAxis2=((az_Alt1-az_Alt2)*(15.0/(AltAzTrackingRange/60.0))/2.0)*az_currentRate;
// override for special case of near a celestial pole
if (90.0-fabs(az_Dec)<=0.5) { az_deltaAxis1=0.0; az_deltaAxis2=0.0; }
}
} else
// finish once every 200 calls
if (az_step==200) {
az_step=0;
done=true;
}
return done;
}
#endif
// -----------------------------------------------------------------------------------------------------------------------------
// Misc. numeric conversion
double timeRange(double t) {
while (t>=24.0) t-=24.0;
while (t< 0.0) t+=24.0;
return t;
}
double haRange(double d) {
while (d>=180.0) d-=360.0;
while (d<-180.0) d+=360.0;
return d;
}
double degRange(double d) {
while (d>=360.0) d-=360.0;
while (d< 0.0) d+=360.0;
return d;
}
double dist(double a, double b) {
if (a>b) return a-b; else return b-a;
}
double angDist(double h, double d, double h1, double d1) {
return acos(sin(d/Rad)*sin(d1/Rad)+cos(d/Rad)*cos(d1/Rad)*cos((h1-h)/Rad))*Rad;
}
// floating point range of +/-255.999999x
uint64_t doubleToFixed(double d) {
fixed_t x;
x.fixed = (long)(d*8388608.0); // shift 23 bits
x.fixed = x.fixed<<9;
return x.fixed;
}
// floating point range of +/-255.999999x
double fixedToDouble(fixed_t a) {
long l = a.fixed>>9; // shift 9 bits
return ((double)l/8388608.0); // and 23 more, for 32 bits total
}
// integer numeric conversion with error checking
boolean atoi2(char *a, int *i) {
char *conv_end;
long l=strtol(a,&conv_end,10);
if ((l<-32767) || (l>32768) || (&a[0]==conv_end)) return false;
*i=l;
return true;
}
double frac(double v) {
return v - ((long)v);
}
double cot(double n) {
return 1.0/tan(n);
}
// Acceleration rate calculation
void SetAccelerationRates(double maxRate) {
// set the new acceleration rate
StepsForRateChangeAxis1= ((double)DegreesForAcceleration/sqrt((double)StepsPerDegreeAxis1))*0.3333333*StepsPerDegreeAxis1*maxRate;
StepsForRateChangeAxis2= ((double)DegreesForAcceleration/sqrt((double)StepsPerDegreeAxis2))*0.3333333*StepsPerDegreeAxis2*maxRate;
slewSpeed=(1000000.0/(maxRate/16L))/StepsPerDegreeAxis1;
}
// Sound/buzzer
void soundAlert() {
if (soundEnabled) {
#ifdef BUZZER_ON
digitalWrite(TonePin,HIGH); buzzerDuration=100;
#endif
#ifdef BUZZER
tone(TonePin,BUZZER,1000);
#endif
}
}