-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path00_My_EmptyDrops_SoupX_Pipeline.R
448 lines (368 loc) · 19.8 KB
/
00_My_EmptyDrops_SoupX_Pipeline.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
##### NOTE ####
# Requires sample name and folder of Seurat raw matrix as input.
# Pipeline:
# EmptyDrops - select cells
# Seurat - quick standard pipeline & clustering
# scmap - automatic annotation using map 1.0
# SoupX - remove background RNA
# Last Updated: 28/07/2020 by: Tallulah Andrews
# Change log:
# Created by: Tallulah Andrews (28/07/2020)
##############
###### Load Requirements ######
a1 = suppressPackageStartupMessages(require(methods))
a2 = suppressPackageStartupMessages(require(Matrix))
a3 = suppressPackageStartupMessages(require("DropletUtils"))
a4 = suppressPackageStartupMessages(require(dplyr))
a5 = suppressPackageStartupMessages(require(Seurat))
a6 = suppressPackageStartupMessages(require(optparse))
a7 = suppressPackageStartupMessages(require("SoupX"))
a8 = suppressPackageStartupMessages(require("ggplot2"))
if (! (a1 & a2 & a3 & a4 & a5 & a6 & a7 & a8) ) {
print("Cannot load all required packages: methods, Matrix, DropletUtils, dplyr, Seurat, optparse, SoupX", "ggplot2")
exit()
}
script_dir = "/cluster/home/tandrews/scripts/LiverMap2.0"
source(paste(script_dir, "My_R_Scripts.R", sep="/"));
source("/cluster/home/tandrews/R-Scripts/Ensembl_Stuff.R"); #Map gene names
## Auto Annotation Stuff ##
# Colour Scheme #
source(paste(script_dir, "Colour_Scheme.R", sep="/"))
source(paste(script_dir, "Setup_autoannotation.R", sep="/"))
do_annotation <- function(myseur) {
myseur <- run_scmap_seurat(myseur, scmap_ref=map1_ref);
marker_anno <- Use_markers_for_anno(myseur@assays$RNA@data, myseur$seurat_clusters);
general_labs <- simplify_annotations([email protected]$scmap_cell_anno)
general_labs2 <- simplify_annotations([email protected]$scmap_cluster_anno)
general_labs[general_labs != general_labs2] <- "ambiguous"
general_labs[general_labs == "unassigned"] <- "ambiguous"
[email protected]$general_labs <- general_labs;
inconsistent <- [email protected]$scmap_cell_anno != [email protected]$scmap_cluster_anno;
[email protected]$consistent_labs <- as.character([email protected]$scmap_cell_anno);
[email protected]$consistent_labs[inconsistent] <- as.character(general_labs[inconsistent]);
[email protected]$marker_labs <- as.character(marker_anno$cell_assign)
[email protected]$marker_general_labs <- simplify_annotations(as.character(marker_anno$cell_assign))
return(myseur)
}
## ARGUMENTS & Parameters ##
option_list <- list(
make_option(c("-i", "--input_dir"),
help="Directory of raw unfiltered cell ranger UMI counts (required)"),
make_option(c("-o", "--out_prefix"), default="Cleaned_output",
help="prefix for output files [default %default]"),
make_option(c("--organism"), default="Human",
help="Organism, currently supported: [Human, Mouse, Rat]"),
make_option(c("-M", "--max_cells"), type="integer", default=20000,
help="Maximum number of plausible cells [default %default]",
metavar="number"),
make_option(c("-m", "--min_cells"), type="integer", default=100,
help="Minimum number of plausible cells [default %default]",
metavar="number"),
make_option(c("--FDR"), default=0.01,
help="FDR threshold for EmptyDrops [default %default]",
metavar="false discovery rate"),
make_option(c("--trim"), default=10,
help="threshold below which droplets are ignored completely [default %default]",
metavar="number"),
make_option(c("--mt"), default=50,
help="threshold for mitochondrial expression percentage [default %default]",
metavar="number"),
make_option(c("-g", "--genes"), default=100,
help="Threshold for minimum genes per cell [default %default]",
metavar="number"),
make_option(c("-c", "--cells"), default=10,
help="Threshold for minimum cells a gene is detected in [default %default]"),
make_option(c("--npcs"), default=20,
help="number of principal components to use [default %default]"),
make_option(c("--kNN"), default=20,
help="k used for the nearest neighbour network [default %default]"),
make_option(c("--res"), default=1,
help="Resolution used for Seurat clustering [default %default]")
)
OPTS <- parse_args(OptionParser(option_list=option_list))
print(OPTS)
rawdata <- Read10X(data.dir = OPTS$input_dir)
# Remove rows & columns that are completely zero
rawdata <- rawdata[,Matrix::colSums(rawdata) > OPTS$trim]
rawdata <- rawdata[Matrix::rowSums(rawdata) > 0,]
print(paste("Raw Data:", dim(rawdata), "input",c("gene","cells"), "of", OPTS$out_prefix))
# fixed edgecase when fewer droplets pass trim threshold than
# specified for minimum plausible cells (20Aug2020)
if( ncol(rawdata) < OPTS$max_cells) {
OPTS$max_cells <- ncol(rawdata) - 2;
}
# Rank droplet barcodes by total UMIs
br.out <- barcodeRanks(rawdata)
## Get total UMIs that correspond to the min & max thresholds.
plausible_cell_threshold <- max(br.out$total[br.out$rank > OPTS$max_cells]);
mandatory_cell_threshold <- max(br.out$total[br.out$rank < OPTS$min_cells]);
# My calling threshold
n_umi_sorted <- br.out$total[order(br.out$total, decreasing = T)]
rank_sorted <- 1:length(n_umi_sorted);
slope <- diff(log(n_umi_sorted))/diff(log(rank_sorted))
spar = 0.5
inflection = OPTS$min_cells
while(inflection == OPTS$min_cells) {
smooth_slope <- smooth.spline(slope, spar=spar) # changed to 0.4 from 0.5 on 19Aug202
inflection <- which(smooth_slope$y == min(smooth_slope$y[OPTS$min_cells:OPTS$max_cells]))
spar=spar*0.8
}
spar = spar/0.8;
my_inflection <- n_umi_sorted[inflection];
is_empty_threshold = max(plausible_cell_threshold,
br.out$knee,
br.out$inflection, my_inflection)
# fixed the comparison below on 19 Aug2020
if (is_empty_threshold > n_umi_sorted[OPTS$min_cells*10]){
if (is.finite(plausible_cell_threshold)) {
is_empty_threshold = plausible_cell_threshold
} else {
is_empty_threshold = min(br.out$knee, br.out$inflection)
}
}
# Threshold Plot
png(paste(OPTS$out_prefix, "inflection_points.png", sep="_"), width=4, height=4, units="in", res=50)
plot(br.out$rank, br.out$total, log="xy", xlab="Rank", ylab="Total")
o <- order(br.out$rank)
lines(br.out$rank[o], br.out$fitted[o], col="red")
abline(h=br.out$knee, col="darkorange", lty=2, lwd=2)
abline(h=br.out$inflection, col="firebrick", lty=2, lwd=2)
abline(h=my_inflection, col="darkgoldenrod2", lty=2, lwd=2)
abline(h=is_empty_threshold, col="dodgerblue", lty=2, lwd=2)
legend("bottomleft", lty=2, lwd=2, c("knee", "inflection", "log-inflection", "empty_threshold"), col=c("darkorange", "firebrick", "darkgoldenrod2", "dodgerblue"), bty="n");
dev.off()
########### Begin if init seurat output file exists
if (!file.exists(paste(OPTS$out_prefix, "EmptyOnly.rds", sep="_"))) {
# Run EmptyDrops
set.seed(100)
e.out <- emptyDrops(rawdata, lower=is_empty_threshold, niters=100000, ignore=OPTS$trim, retain=mandatory_cell_threshold)
# Clean up results
e.out <- e.out[!is.na(e.out$PValue),] # Remove NAs (too few UMIs to estimate PValue)
e.out$q.value <- e.out$PValue;
e.out$q.value[e.out$Limited] <- 0; # Set those with p < 1/n_simulations to p = 0 to ensure they are kept after multiple testing correction
e.out$q.value <- p.adjust(e.out$q.value, method="fdr"); # apply FDR multiple testing correction.
# Significance threshold
is.cell <- e.out$q.value <= OPTS$FDR
# Plot of selected cells
png(paste(OPTS$out_prefix, "emptyDrops.png", sep="_"), width=6, height=6, units="in", res=150)
plot(e.out$Total, -e.out$LogProb, col=ifelse(is.cell, "red", "black"),
xlab="Total UMI count", ylab="-Log Probability", pch=18)
dev.off()
# Subset the matrix to the selected droplets and save it to a file.
# Get number of detected genes/droplet
emptymat <- rawdata[,match(rownames(e.out),colnames(rawdata))]
emptymat <- emptymat[,is.cell]
print(paste("EmptyDrops :", dim(emptymat), "output",c("gene","cells"), "of", OPTS$out_prefix))
############### Quick Seurat Pipeline ##############
set.seed(8478)
myseur <- Seurat::CreateSeuratObject(counts = emptymat, project = OPTS$out_prefix, min.cells = OPTS$cells, min.features = OPTS$genes)
# Mitochondrial filter
myseur[["percent.mt"]] <- Seurat::PercentageFeatureSet(myseur, pattern = "^MT-", )
if (sum(myseur[["percent.mt"]]) == 0) {
myseur[["percent.mt"]] <- Seurat::PercentageFeatureSet(myseur, pattern = "^mt-", ) # Rat
}
if (sum(myseur[["percent.mt"]]) == 0) {
myseur[["percent.mt"]] <- Seurat::PercentageFeatureSet(myseur, pattern = "^Mt-", ) # Mouse
}
myseur <- subset(myseur, subset = nFeature_RNA > OPTS$genes & percent.mt < OPTS$mt)
print(paste("Seurat :", dim(myseur), "output",c("gene","cells"), "of", OPTS$out_prefix))
# Remap Genes using Orthologs
rename_genes <- function(myseur, new_names, old_names) {
new_names[new_names==""] <- old_names[new_names==""]
new_names[duplicated(new_names)] <- old_names[duplicated(new_names)]
rownames(myseur@assays$RNA@counts) <- new_names
if (nrow(myseur@assays$RNA@data)==length(new_names)) {
rownames(myseur@assays$RNA@data) <- new_names
}
if (nrow(myseur@[email protected])==length(new_names)) {
rownames(myseur@[email protected]) <- new_names
}
return(myseur)
}
genes <- rownames(myseur)
myseur[["RNA"]][["origID"]] <- genes
#myseur@misc[["orig_gene_ID"]] <- genes
raw_genes <- rownames(rawdata) # fix gene ID to remove hypens like Seurat does.
raw_genes <- sub("_","-", raw_genes)
rownames(rawdata) <- raw_genes
if (OPTS$organism == "Mouse") {
hgenes <- General_Map(genes, in.org="Mmus", out.org="Hsap", in.name="symbol", out.name="symbol")
myseur <- rename_genes(myseur, hgenes, genes)
hgenes <- General_Map(rownames(rawdata), in.org="Mmus", out.org="Hsap", in.name="symbol", out.name="symbol")
tofix <- hgenes=="" | duplicated(hgenes)
hgenes[tofix] <- rownames(rawdata)[tofix]
rownames(rawdata) <- hgenes
}
if (OPTS$organism == "Rat") {
hgenes <- General_Map(genes, in.org="Rat", out.org="Hsap", in.name="symbol", out.name="symbol")
myseur <- rename_genes(myseur, hgenes, genes)
hgenes <- General_Map(rownames(rawdata), in.org="Rat", out.org="Hsap", in.name="symbol", out.name="symbol")
tofix <- hgenes=="" | duplicated(hgenes)
hgenes[tofix] <- rownames(rawdata)[tofix]
rownames(rawdata) <- hgenes
}
# Add metadata
[email protected]$cell_barcode <- colnames(myseur)
[email protected]$donor <- rep(OPTS$out_prefix, ncol(myseur));
[email protected]$cell_ID <- paste([email protected]$donor, [email protected]$cell_barcode, sep="_");
orig.meta.data <- [email protected];
}
###### End if init seurat doesn't exist
print("Seurat Pipeline")
run_seurat_pipeline <- function(myseur, out_tag) {
# Normalize
myseur <- Seurat::NormalizeData(myseur);
# Scale
myseur <- Seurat::ScaleData(myseur);
# HVG genes (n=2000)
myseur <- Seurat::FindVariableFeatures(myseur, selection.method = "vst", nfeatures = 2000)
hvgs <- VariableFeatures(myseur); hvgs <- hvgs[!grepl("^MT-", hvgs)]; # added 22Sept2020
hvgs <- VariableFeatures(myseur); hvgs <- hvgs[!grepl("^Mt-", hvgs)]; # added 22Sept2020
hvgs <- VariableFeatures(myseur); hvgs <- hvgs[!grepl("^mt-", hvgs)]; # added 22Sept2020
VariableFeatures(myseur) <- hvgs;
# PCA
myseur <- Seurat::RunPCA(myseur, features = VariableFeatures(object = myseur))
# Clustering
myseur <- Seurat::FindNeighbors(myseur, dims = 1:OPTS$npcs)
myseur <- Seurat::FindClusters(myseur, resolution = OPTS$res, k.param=OPTS$kNN)
# Visualization with TSNE & UMAP
myseur <- Seurat::RunUMAP(myseur, dims = 1:OPTS$npcs, parallel=FALSE)
#Cell-cycle
s.genes <- cc.genes$s.genes
g2m.genes <- cc.genes$g2m.genes
myseur <- Seurat::CellCycleScoring(myseur, s.features = s.genes, g2m.features=g2m.genes, set.ident=TRUE)
# AutoAnnotation with scmap
myseur <- do_annotation(myseur)
print(paste("Clusters:", length(unique([email protected]$seurat_clusters)), "in", OPTS$out_prefix))
############### PLOTTING ###########
##### Make plots ####
agg_coord_by_cluster <- function(coords, clusters) {
x <- split(seq(nrow(coords)), clusters)
result <- sapply(x, function(a) apply(coords[a,],2,median))
return(result)
}
umap_lab_pos <- agg_coord_by_cluster(myseur@[email protected], [email protected]$seurat_clusters)
# UMAP + Ref scmap anno
new_colour_scheme <- Cell_type_colours[order(Cell_type_colours[,1]),]
[email protected]$consistent_labs <- map_cell_types([email protected]$consistent_labs)
new_colour_scheme <- new_colour_scheme[new_colour_scheme[,1] %in% [email protected]$consistent_labs,]
png(paste(OPTS$out_prefix, out_tag, "_refanno_umap.png", sep="_"), width=6, height=6, units="in", res=100)
DimPlot(myseur, reduction="umap", group.by="consistent_labs", pt.size=.1)+scale_color_manual(values=new_colour_scheme[,2])+annotate("text", x=umap_lab_pos[1,], y=umap_lab_pos[2,], label=colnames(umap_lab_pos), colour="grey35")
dev.off()
# UMAP + Marker scmap anno
new_colour_scheme <- Cell_type_colours[order(Cell_type_colours[,1]),]
[email protected]$marker_labs <- map_cell_types([email protected]$marker_labs)
new_colour_scheme <- new_colour_scheme[new_colour_scheme[,1] %in% [email protected]$marker_labs,]
png(paste(OPTS$out_prefix, out_tag, "_markanno_umap.png", sep="_"), width=6, height=6, units="in", res=100)
print(DimPlot(myseur, reduction="umap", group.by="marker_labs", pt.size=.1)+scale_color_manual(values=new_colour_scheme[,2])+annotate("text", x=umap_lab_pos[1,], y=umap_lab_pos[2,], label=colnames(umap_lab_pos), colour="grey35"))
dev.off()
# General QC Plots
png(paste(OPTS$out_prefix, out_tag, "_default_umap.png", sep="_"), width=6, height=6, units="in", res=100)
print(Seurat::DimPlot(myseur, reduction = "umap"))
dev.off()
png(paste(OPTS$out_prefix, out_tag, "perMT.png", sep="_"), width=6, height=6, units="in", res=150)
print(Seurat::FeaturePlot(myseur, "percent.mt", reduction="umap")+theme(
axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(), axis.title.y=element_blank()))
dev.off()
png(paste(OPTS$out_prefix, out_tag, "nFeature.png", sep="_"), width=6, height=6, units="in", res=150)
print(Seurat::FeaturePlot(myseur, "nFeature_RNA", reduction="umap")+theme(
axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(), axis.title.y=element_blank()))
dev.off()
png(paste(OPTS$out_prefix, out_tag, "CCphase.png", sep="_"), width=6, height=6, units="in", res=150)
print(Seurat::DimPlot(myseur, group.by="Phase", reduction="umap"))
dev.off()
png(paste(OPTS$out_prefix, out_tag, "MarkerGenes.png", sep="_"), width=12, height=12, units="in", res=150)
print(Seurat::FeaturePlot(myseur, features=c("ALB","CYP3A4", "SCD", "MARCO", "LYZ", "CD68", "IGKC", "TRAC", "PTPRC"))+theme(
axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(), axis.title.y=element_blank()))
dev.off()
return(myseur)
}
if (!file.exists(paste(OPTS$out_prefix, "EmptyOnly.rds", sep="_"))) {
myseur <- run_seurat_pipeline(myseur, "initSeurat");
saveRDS(myseur, paste(OPTS$out_prefix, "EmptyOnly.rds", sep="_"));
} else {
myseur <- readRDS(paste(OPTS$out_prefix, "EmptyOnly.rds", sep="_"));
orig.meta.data <- [email protected];
}
############## SoupX ##############
SoupX_outfile <- paste(OPTS$out_prefix, "SoupX.rds", sep="_")
# SoupX
require("Seurat")
set.seed(4671)
# Create SoupX object
#my_seur_genes <- unlist(myseur[["RNA"]][["origID"]])
#my_seur_genes <- unlist(myseur@misc[["orig_gene_ID"]])
#raw_data_genes <- rownames(rawdata)
rawdata <- rawdata[rownames(rawdata) %in% rownames(myseur),]
myseur <- myseur[rownames(myseur) %in% rownames(rawdata),]
#rawdata <- rawdata[match(unlist(myseur[["RNA"]][["origID"]]), rownames(rawdata)),]
#rawdata <- rawdata[match(unlist(myseur@misc[["orig_gene_ID"]]), rownames(rawdata)),]
rawdata <- rawdata[match(rownames(myseur), rownames(rawdata)),]
#rownames(rawdata) <- rownames(myseur)
keep_cells <- colnames(myseur);
tot_umi <- Matrix::colSums(rawdata);
tot_is_cell <- min(tot_umi[colnames(rawdata) %in% colnames(myseur)])
raw_is_cell <- rawdata[,keep_cells]
myseur <- myseur[,match(colnames(raw_is_cell), colnames(myseur))]
sc <- SoupChannel(rawdata, raw_is_cell, [email protected], soupRange=c(10, tot_is_cell*0.9))
anno_cluster <- cell_anno_to_cluster_anno(as.character(unlist([email protected]$consistent_labs)), [email protected]$seurat_clusters)
anno_cluster <- anno_cluster$lab[match([email protected]$seurat_clusters, anno_cluster$cluster)]
sc <- setClusters(sc, anno_cluster);
sc <- setDR(sc, cbind(myseur@[email protected][,1], myseur@[email protected][,2]));
# Use known genes to estimate contamination fraction per cell
non_expressed_gene_list = list(HB =c("HBB", "HBA1", "HBA"),
TCR=c("TRAC", "TRBC1", "TRBC2", "TRDC", "TRGC1", "TRGC2"),
Drug=c("CYP2E1", "CYP3A7", "CYP2A7", "CYP2A6"),
BCR=c("IGKC", "IGHE", "IGHM", "IGLC1", "IGLC3", "IGLC2"),
Clot=c("F10", "F5", "F9", "F7", "FGB"),
Bile=c("SLC10A1", "SLC01B1", "SLCO1B3", "SLC22A1", "SLC22A7",
"ABCB1", "ABCB11", "ABCB4", "ABCC3", "ABCC6"));
#Jawaria - 7Aug2020
#expanded_expressed_gene_list = list(HB =c("HBB", "HBA1", "HBA"),
# TCR=c("TRAC", "TRBC1", "TRBC2", "TRDC", "TRGC1", "TRGC2"),
# Drug=c("CYP2E1", "CYP3A7", "CYP2A7", "CYP2A6", "CYP2B6", "CYP2C8"),
# BCR=c("IGKC", "IGHE", "IGHM", "IGLC1", "IGLC3", "IGLC2"),
# Clot=c("F10", "F5", "F9", "F7", "FGB", "FGG", "FGL1"),
# Bile=c("SLC10A1", "SLC01B1", "SLCO1B3", "SLC22A1", "SLC22A7",
# "ABCB1", "ABCB11", "ABCB4", "ABCC3", "ABCC6"),
# Lipid=c("APOC1", "APOC3", "APOA2", "APOA1", "APOE", "APOH"));
# For snRNAseq
expanded_non_genes = list(
AntiB=c("IGKC","JCHAIN","IGHA1","IGLC1","IGLC2","IGLC3"),
MatB=c("CD22","CD37","CD79B","FCRL1","LTB","DERL3","IGHG4"),
CD3T=c("CD8A","CD8B","CD3D","CD3G","TRAC","IL32","TRBC1","TRBC2"),
Hep=c("CYP1A2","CYP2E1","CYP3A4","GLUL","DCXR","FTL","GPX2","GSTA1","CYP2A7","FABP1","HAL","AGT","ALDOB","SDS"),
LSEC=c("FCN2","CLEC1B","CLEC4G","PVALB","S100A13","GJA5","SPARCL1","CLEC14A","PLVAP","EGR3"),
Eryth=c("HBB","HBA1","HBA2"),
NKT=c("CSTW","IL7R","GZMB","GZMH","TBX21","HOPX","PRF1","S100B","TRDC","TRGC1","TRGC2","IL2RB","KLRB1","NCR1","NKG7","NCAM1","XCL2","XCL1","CD160","KLRC1"),
Mac=c("VCAN","S100A8","MNDA","LYZ","FCN1","CXCL8","VCAN","VCAM1","TTYH3","TIMD4","SLC40A1","RAB31","MARCO","HMOX1","C1QC"),
Chol=c("PROM1","SOX9","KRT7","KRT19","CFTR","EPCAM","CLDN4","CLDN7","ANXA4","TACSTD2"),
Stel=c("ACTA2","COL1A1","RBP1","TAGLN","ADAMTSL2","GEM","LOXL1","LUM"),
Endo=c("PECAM1","TAGLN","VWF","FLT1","MMRN1","RSPO3","LYPD2","LTC4S","TSHZ2","IL1R1")
)
non_expressed_gene_list <- lapply(non_expressed_gene_list, function(x){return(x[x %in% rownames(myseur)])})
size <- unlist(lapply(non_expressed_gene_list, length))
non_expressed_gene_list<-non_expressed_gene_list[size > 3]
expanded_non_genes <- lapply(expanded_non_genes, function(x){return(x[x %in% rownames(myseur)])})
size <- unlist(lapply(expanded_non_genes, length))
expanded_non_genes<-expanded_non_genes[size > 3]
if (length(non_expressed_gene_list) < 4) {
non_expressed_gene_list <- expanded_non_genes
}
useToEst = estimateNonExpressingCells(sc, nonExpressedGeneList = non_expressed_gene_list, clusters=myseur$seurat_clusters)
sc = calculateContaminationFraction(sc, non_expressed_gene_list, useToEst = useToEst, cellSpecificEstimates=TRUE)
quantile(sc$metaData$rho)
# Correcting the expression matrix.
out = adjustCounts(sc)
out <- out[,match(colnames(myseur), colnames(out))]
print(identical(colnames(out), rownames([email protected])))
soup_seurat <- CreateSeuratObject(counts=out, meta.data=orig.meta.data, project=OPTS$out_prefix, min.cells = OPTS$cells, min.features = OPTS$genes);
saveRDS(soup_seurat, paste(OPTS$out_prefix, "SoupX_prepipeline.rds", sep="_"))
soup_seurat <- run_seurat_pipeline(soup_seurat, "SoupSeurat");
saveRDS(soup_seurat, paste(OPTS$out_prefix, "SoupX.rds", sep="_"))